A distributed system must adapt to network changes, as new devices are added, old ones are removed, existing ones change, and parts of the network fails or changes. The Jini architecture is designed to adapt to those changes. Jini is a Java-based simple infrastructure for seamless connection of hardware devices and software services together in a networked environment.

- The list of major topics to be covered in this tutorial:
 - The Jini Vision
 - The Jini Model of Distributed Computing
 - Jini Architecture
 - Key Concepts of Jini Model
 - Components of Jini Model
 - Jini Service Architecture
 - Sample Applications
 - Useful Sources

Each section will be accompanied with several examples from our R&D projects.

Tutorial Level: Intermediate

Required Experience of Audience:
This tutorial is designed for software and IT professionals who are familiar with the fundamental concepts and principles of object-oriented component-based software development, distributed object computing, and Java. Extensive working experience with Java is a plus but NOT required. This tutorial will provide the background information required for understanding the related issues and technologies.

Attendee Benefits:
This tutorial is intended to provide attendees with the opportunity to acquire a good understanding of the Jini vision, Jini model of distributed computing, Jini architecture, components of Jini model, and the Jini service architecture.

Gilda Pour has over twelve years of R&D and industrial experience coupled with eight years of academic experience in object-oriented software engineering for parallel and distributed systems. Dr. Pour's research projects, currently funded by industry and NASA, are in the area of object-oriented component-based enterprise application development including multi-tier Web-based enterprise application development. She has also contributed to several projects in the areas of distributed enterprise object computing and Internet technology in Hewlett-Packard R&D Laboratories and Software Engineering Research Center. In addition, she contributed to several research projects funded by Air Force, Rome Laboratory, and industry.

Dr. Pour is currently a professor of software and information engineering at San Jose State University. She has developed and taught several courses on component-based enterprise software engineering, component-based enterprise application development, component technologies, and distributed object technology in both industry and academia. On related topics, she has given seminars and tutorials, chaired
panels, and led workshops at International Conference Series on Technology of Object-Oriented Languages and Systems (TOOLS USA and TOOLS ASIA), Computer Software and Applications Conference (COMPSAC), World Conference of the WWW and Internet (WebNet), Advanced Software Technology for the 21st Century, etc.

She serves as Workshops and Panels Chair for the TOOLS USA ‘2000 Conference. Previously she served as the Workshops and Panels Chair for TOOLS USA ’99 and Tutorials Chair for TOOLS ASIA ’99. Gilda Pour with Dr. Martin Griss organized a series of workshops, entitled "Making the Transition to Component-Based Enterprise Software Development: Overcoming the Obstacles - Patterns for Success," at OOPSLA 1999 and TOOLS USA 1999.

Gilda Pour holds a doctoral degree in Computer Science/Software Engineering from the University of Massachusetts, an Engineer's degree in Computer & Information Sciences and Engineering/Software Engineering from the University of Florida, a M.S. degree in Electrical Engineering/Systems, and a B.S. degree in Electrical and Computer Engineering from Florida State University.