ACQUISITION AND INTERPRETATION OF
3-D SENSOR DATA FROM TOUCH

Peter K. Allen
Paul Michelman

Department of Computer Science
Columbia University
New York, New York 10027

Abstract

Acquisition of 3-D scene information has focused on either passive 2-D imaging methods (stereopsis, structure from motion etc.) or 3-D range sensing methods (structured lighting, laser scanning etc.). Little work has been done in using active touch sensing with a multi-fingered robotic hand to acquire scene descriptions, even though it is a well developed human capability. Future robotic systems will need to use dextrous robotic hands for tasks such as grasping, manipulation, assembly, inspection and object recognition. This paper describes our use of touch sensing as part of a larger system we are building for 3-D shape recovery and object recognition using touch and vision methods. It focuses on three exploratory procedures we have built to acquire and interpret sparse 3-D touch data; grasping by containment, planar surface exploration and surface contour exploration. Experimental results for each of these procedures are presented.

1. INTRODUCTION

Acquisition of 3-D scene information has focused on either passive 2-D imaging methods (stereopsis, structure from motion etc.) or 3-D range sensing methods (structured lighting, laser scanning etc.). Little work has been done in using active touch sensing with a multi-fingered robotic hand to acquire scene descriptions, even though it is a well developed human capability [20]. Touch sensing differs from other more passive sensing modalities such as vision in a number of ways. A multi-fingered robotic hand with touch sensors can probe, move, and change its environment. This imposes a level of control on the sensing that makes it typically more difficult than traditional passive sensors in which active control is not an issue. Secondly, touch sensing generates far less data than vision methods; this is especially intriguing in light of psychological evidence (described below) that shows humans can recover shape and a number of other object attributes very reliably using touch alone.

Future robotic systems will need to use dextrous robotic hands for tasks such as grasping, manipulation, assembly, inspection and object recognition. This paper describes our use of touch sensing as part of a larger system we are building for 3-D shape recovery and object recognition using touch and vision methods. It focuses on three exploratory procedures we have built to acquire and interpret sparse 3-D touch data. These procedures serve as a front end to an integrated shape recovery and object recognition system that can combine these exploratory procedures into strategies that can derive constraints about an object's most probable shape (described in Roberts [27]).

While the focus of this paper is on the acquisition and interpretation of touch sensor data, our overall approach to the problem of robotic object recognition lies in a multi-sensor approach; we believe no single sensing modality is currently powerful enough to robustly perceive and recognize its environment. Just as humans exploit a multitude of sensor systems, robotic systems need to use multiple sensors for perception as outlined in Allen [1] and Kak and Chen [18]. A central idea in using multi-sensor data is that over-reliance on one sensor can cause error. It has been empirically observed that trying to extract too much information from a single sensing modality results in a degradation of results; however, using only the most reliable and highest confidence sensor data allows one to proceed along a path that is known to be correct. We call this principle "less is more," in that reduced amounts of reliable data from a single sensor are more useful than large amounts of data which may be spurious. By combining the data that is most reliable from each of a number of sensors, more accurate results may be computed.

The outline of this paper is as follows: Section 2 is an overview of the hardware/sensing environment we have built to perform intelligent hand functions, Section 3 describes the tactile sensing system we have implemented, Section 4 describes three exploratory procedures we have implemented for acquiring and interpreting 3-D touch information, and Section 5 is a summary outlining future work to be done with the hand.

2. SYSTEM OVERVIEW

The system we have built consists of a Utah-MIT hand [16] attached to a PUMA 560 manipulator. The hand contains four fingers, each with four degrees of freedom. It resembles the human hand in size and shape, but lacks a number of features that humans find very useful. In particular, it has no palmar degree of freedom (closing of the palm) and the thumb is placed directly opposite the other three fingers, with all fingers identical in size (see figure 1). The hand has joint position sensors that yield joint angle data and tendon force sensors that measure forces on each of the two tendons (extensor and flexor) that control a joint. The PUMA adds 6 degrees of freedom to the system (3 translation parameters to move the hand in space and 3 rotational parameters to orient the hand), yielding a 22 degree of freedom system. Clearly, such a system is a nightmare to control at the servo-level in real-time. Our approach is to use the embedded controllers in each of these systems, controlling and communicating with them through an intelligent, high-level controller that links together the movements of arm, hand, and fingers with the feedback sensing of joint positions, tendon forces, and tactile responses on the fingers.
The high-level control resides in a SUN-3 processor. The SUN serves as the central controller, and has access to a full UNIX-based system for program development and debugging as well as a set of window-based utilities to allow graphical output and display of the system's various states. The hand is controlled by an analog controller that is commanded through D/A boards from a dedicated 68020 system. The SUN is capable of downloading and executing code on the 68020 and can communicate with it through a shared memory interface [24]. The tactile sensing system is controlled by another dedicated 68020 that monitors the forces on each of the sensor pads. The connection from the SUN to the PUMA is via the VAL-II host control option over a serial interface. We are currently changing the interface to the PUMA to RCCL [1] to make the hand-arm interaction more tightly coupled. The system has been used to perform a number of object manipulation and grasping tasks including pouring liquids from pitchers and removing light bulbs from sockets [2].

3. TACTILE SENSORS

While the level of sensing provided by the joint position and tendon force sensors on the Utah/MIT hand is better than earlier implemented hands, it still falls far short of the requirements for a dextrous manipulation system. In particular, what is desired is accurate positional contact information between the hand and a target object, and a measure of the forces exerted by the fingers at these contact points. The sensory feedback provided by the hand does not allow for localization of contacts. Hence, a requirement for this system is a robust and accurate tactile sensing capability, utilizing sensors mounted on the links of the fingers. Tactile sensing differs from traditional vision sensing in its active nature. Thus, a robotic system that employs tactile sensors on the fingers of a dextrous hand must deal with three related issues: 1) acquisition and interpretation of tactile sensor data from many sites on multiple fingers, 2) control of the dextrous hand using tactile sensor feedback, and 3) development of sensing strategies using tactile feedback.

To satisfy the first requirement, we have mounted tactile sensors on each of the hand's fingers. The technology being used is a piezoresistive polymeric material manufactured by Interlink, Inc. [39,32]. The design of the tactile pads we are using sandwiches the polymer between two pliable sheets of Kapton material that contains electrical etching. The application of forces on the pads provides an increased electrical flow channel between the two sheets as the material within is compressed. The piezoresistive polymer is patterned to form rows on one substrate and columns on the other. The rows and columns form a grid in which each intersection acts as a force-sensitive variable resistance whose value decreases approximately exponentially with normal force. The pads consist of 16 rows by 16 columns, providing a sense resolution of 256 points on a 0.5 x 1.0 inch pad.

The 256 sites of each sensor pad are addressed independently by an analog circuitry that cancels current flow in all paths of the grid except the one containing the resistive element being measured using a method developed by van Brussel and Belien [33]. A hardware interface board has been developed to perform this operation at high-speed. The interface board performs the analog-to-digital conversion task by means of an 8-bit flash A/D converter and allows up to sixteen sensor pads to be addressed.

Some of the low-level tactile primitives that have been implemented are:

- **Tactile Filters**: A number of useful digital filters have been implemented including averaging and median filters which are very useful in processing noisy tactile data [22].
- **Tactile Moments**: A useful technique for quickly getting contact information is central moment analysis [15]. The contact area and centroid of the contact can be determined using moments. The second moments are useful for determining the eccentricity of the contact region and the principal axes of the contact.
- **Edge Detection**: A number of edge detectors have been developed and used for feature extraction from tactile images.
- **Line Detection**: Lines are detected by using the output of the edge detection procedure in a Hough transform [5].

Results with this sensor have been good. The signal is very localized and by using moment analysis we have been able to stably determine contact location on the pads.

4. ACTIVE HAPTIC SENSING FOR OBJECT RECOGNITION TASKS

A focus of our work has been in the use of the hand system described above to recover the shape of objects in a scene. Object recognition has traditionally been associated with vision sensor systems. However, these systems suffer from a number of inherent problems, not the least of which is occlusion. A vision system will be limited to a view that obscures all back-facing areas of the object. In robot manipulation tasks, important areas of the work environment are occluded by the end-effector itself. This difficulty is especially acute during the act of acquiring a grasp on an object, when the contact areas will be occluded. A number of interesting properties of the human haptic system have been investigated by Lederman and Klatzky and their colleagues [19-21]. This work has shown that an important component of the haptic system is its ability to recognize attributes of three-dimensional objects quickly and accurately. Among these attributes are global shape, hardness, temperature, weight, size, articulation and function. An outcome of this research is the identification of hand movement strategies that are used by humans in discovering different attributes of three-dimensional objects. They have labeled these EP's, or Exploratory Procedures, and have reported success rates of 96-99% in identifying different object properties using two-handed, haptic exploration. We have found it natural to extend these human capabilities to our robotic hand system which we describe below.

4.1. Coarse to Fine Recognition Strategies

In acquiring information about a scene, a hierarchical approach seems intuitive. Information content is often related to scale, and different sensory systems work at different size and detail scales [7,34]. Our approach is to find gross object shape initially and then use a hypothesis and test method to generate

An important point to be made in applying hands to robots is that the human perceptual process of interest is haptic perception. By this, we mean the interplay of both the cutaneous system (skin, tactile receptors) and the kinesthetic system (joints, muscle and bone) of the arm [10].

34
more detailed information about an object as discussed in Allen [1]. This approach is especially relevant with touch sensing, in which there is evidence that the human tactile system serves essentially as a low-pass filter[21]. This motivates the idea of using an initial global estimate of shape which can then be further refined by more specific and localized sensing. The problem of generating a good initial hypothesis is central to robust object recognition. If we can generate a good initial shape estimate, then we will be much more successful as we try to discover further object structure. The requirements for an initial shape estimator are that it be efficient, stable in the presence of noise and uncertainty, and able to use sparse, partial data. We have implemented such a shape recovery method which we call grasping by containment. This method was initially discussed in [3] and it is reviewed here since the method serves as a precursor to the other two EP's we have implemented.

4.2. Exploratory procedure 1: Grasping by Containment
Grasping by containment is an attempt to understand an object's gross contour and volume by effectively molding the hand to the object. We have chosen to model objects as superquadrics [4,6,25] whose surface 3-D vector X is defined below using a latitudinal and longitudinal parameterization expressed in spherical coordinates.

$$X(\eta, \omega) = \begin{bmatrix}
 a_1 c_{\omega} c_{\eta} c_{\theta} \\
 a_2 c_{\omega} s_{\eta} s_{\theta} \\
 a_3 s_{\omega} s_{\theta}
\end{bmatrix}$$

$$-\frac{\pi}{2} \leq \eta \leq \frac{\pi}{2}, -\pi \leq \omega \leq \pi$$

$$c_{\omega}, s_{\omega}$$ are Cosine(\omega) and Sine(\omega).

$$c_{\eta}, s_{\eta}$$ are the superquadric shape parameters.

$$a_1, a_2, a_3$$ are scaling factors along the X, Y and Z directions.

Superquadrics form a rich set of shape primitives that allows a wide degree of freedom in modeling objects. The parameter space is continuous and allows a smooth change from a cuboid to a sphere to a cylinder, with more complex shapes derivable with the addition of bending and tapering parameters. These "lumps of clay" are deformable by the usual linear stretching and scaling operations and can be combined using boolean set operations to create more complex objects.

What makes superquadrics particularly relevant for haptic recognition is the following:

- The models are volumetric in nature, which maps directly into the psychophysical perception processes suggested by grasping by containment.
- The models can be constrained by the volumetric constraint implied by the joint positions on each finger.
- The models can be recovered with sparse amounts of point contact data since only a limited number of parameters need to be recovered. There are 5 parameters related to shape (see equation 1) and 6 related to position and orientation in space. Global deformations (tapering, bending) add a few more.
- In addition to the use of contact points of fingers on a surface, the surface normals from contacts can be used to describe a dual superquadric which has the same analytical properties as the model itself.
- The analytic nature of the model created from sparse data allows searching strategies in the model space to proceed in a hypothesize and test fashion.

4.3. Recovery Procedure
For this initial work on recognition, we have used a simplified procedure to gather data. The user is asked to use the tactile sensors mounted on the finger links to generate contact data. However, during our initial trials, our tactile sensors were not yet mounted on the hand. Instead, we opted for a method that used the hand's internal joint angle readings and tendon forces to generate Cartesian positions of contact based upon fingertip contact.

The PUMA arm moves the hand to a position in which it will close around the object. The fingers are spread wide during approach. Then the fingers are closed by position commands until the observed force (estimated by the difference between the flexor and extensor tendon tensions) exceeds a given threshold, which indicates that the finger is in contact with the object. The joint angle positions are read, and kinematic models of the hand and the PUMA arm are used to convert them to XYZ positions in world coordinates. Then the fingers are opened wide again, and a second containing grasp is executed, with the fingers taking different approach paths. The fingers are spread once again, and the PUMA arm moves the hand to the next position.

The sequence of PUMA positions is given in advance. Once the contact points are determined using the forward kinematics of the hand derived from the joint angle sensors, the sparse sets of point data is injected into the recovery algorithm developed by Solina [28]. This algorithm uses a Levenberg-Marquardt non-linear least squares approximation to fit the superquadric "inside-out function." This is an implicit form of equation 1 which records if a sample data point lies inside, outside or on the surface of the superquadric model. By summing the squared distance of each sample data point from the current model, an error of fit measure is generated that is minimized by the algorithm.

Equation 1 is for a canonical superquadric located at the origin. Since our sensor data can exist anywhere in the world coordinate space, the algorithm must recover the 6 rotation and translation parameters in addition to the 5 superquadric shape parameters \((a_1, a_2, a_3, c_1, c_2)\). In addition, we allow global deformations to include tapering of superquadric forms. The taper is defined to be a linear tapering with 2 parameters that control the tapering in both the X and Y dimensions. The algorithm must recover a minimum of 11 parameters and 13 if the object is tapered.
We tested this procedure against a database of 6 objects (shown in Figure 3 plus a smaller cylinder). The database included objects that could be modeled as undeformed superquadrics (block, large cylinder, small cylinder) and deformed (tapered) superquadrics (lightbulb, funnel, triangular wedge). The recovered shapes are shown in Figure 4 with the sample data points overlaid on them.

The results of these experiments are quite good, especially considering the sparse nature of the data and the errors in the derived contact points. These errors are a function of the accuracy and calibration of the robotic arm, the hand joint position sensors, and the kinematic model of the hand itself. In spite of this sensor error, the recovered shapes are an accurate representation of the actual object's shape. The data points are overlaid on the recovered shapes to show the closeness of fit and the sparseness of the data. Each object's shape was recovered with extremely sparse data, that, unlike touch sensing, is limited to a viewpoint that only exposes half the object's surfaces to the sensor.

4.4. Exploratory Procedure 2: Planar Surface Explorer

Once a superquadric has been fit to the initial grasp data, we have a strong hypothesis about an object's shape. Of particular importance are the shape parameters e_1 and e_2. The shape of an object can be inferred from these parameters and used to direct further exploration. For example, if the shape parameters appear to be rectangular ($e_1, e_2 \approx 0.1$) then the planar explorer can trace out the plane and perform a least square fit of the trace data to test the surface's planarity. If the shape parameters appear more cylindrical ($e_1 \approx 1, e_2 \approx 0.1$) then the planar faces of the object can be explored with this primitive, and the cylinder's contour can be explored and verified with the contour follower EP (described below). A major benefit of using the superquadric analytic shape description is that it supplies orientation and axis data that are necessary for further active probes of the environment with the hand. Instead of a blind search, we can use the recovered orientation parameters to guide the further exploration of the object. Discovering a planar surface can be a very useful constraint in recognition, particularly if two opposing planar faces of an object are grasped. By discovering multiple planar faces on an object, the recovery methods of Grimson and Lozano-Perez [9] and Ellis et al. [8] can be invoked, which have proven to be strong constraints on recognition of an object.

The explorer uses the hand's index finger. While the index finger is held in an extended position, the PUMA arm is moved until the tactile sensors on the index finger contact a surface (if no contact is detected, the procedure terminates). After the initial contact, the Cartesian position of the contact point is noted. The hand and arm then begin an iterative search for the boundaries of the surface by performing the following sequence: (a) lift the finger off the surface until tactile contact is lost; (b) move the arm in a direction parallel to the surface; (c) if the finger is in contact after the movement, note the new contact location, otherwise lower the index finger until it makes contact with the surface again; (d) repeat steps (a)-(c) until the finger fails to make contact in step (c). In step (d), if the finger does not contact the surface, then either the finger has moved beyond the edge of the surface, or the surface is too far away from the finger to be detected. To check for the latter case, the arm must be moved toward the surface. After completing the first collection of data points and finding the edge of the surface, the index finger is moved back to the position of initial contact, and a second mapping of the surface is undertaken in a direction 180° opposite. This procedure continues until a second surface edge is detected. The search now continues as before but in a direction perpendicular to the first two traces. This procedure then is able to map out a set of contact points on the surface, describing its extent. Each time the finger-tip contacts the surface, the Cartesian coordinates of the contact are retained. The acquisition of data points in this method is compatible with the three-point seed method of Henderson and Bhanu for forming planar surfaces from range data [12]. Figure 5 shows a pattern of traces on 2 adjacent planar faces of a rectangular block using this EP. Least-square planes were fit to each of the traces and the computed angle between the recovered planes is 96° (the actual angle is unknown but assumed to be 90°).

4.5. Exploratory Procedure 3: Surface Contour Following

The third EP we have implemented is surface contour following with a two-fingered grasp. This EP will allow us to determine an object's contour which has been shown to be a strong shape cue from previous vision research [23,26,31]. The contours we are able to extract from touch are inherently three-dimensional. This simplifies recovery of shape since the 2-D image projection used in most contour work entails a loss of information. Since we can recover the three-dimensional contours, we are able to hypothesize a number of different shapes including generalized cylinders and solids of revolution, using the three dimensional contour alone.

The problem of using a tactile device to trace a surface on an object is a complicated one. Previous work by Allen [1] using a one-fingered tactile sensor mounted on a PUMA traced along an curved surface by calculating a weighted vector of constraint directions that tried to follow the surface curvature while preserving smoothness of the trace and a constraint having to do with creating regions bounded by traces that were equivalent in size. Hor [14] traced contours of planar objects using a planar four-fingered "chopstick" like manipulator. Strain gauge sensors on the fingers of this device would calculate surface normals and move tangentially along a surface, recording the contour. Stansfield [30] used a planar LORD tactile sensor mounted on a PUMA to trace edges and other features on objects.

Our method is now described. First, the PUMA is moved to a location near one end of the explored object, and the thumb and index finger are opened enough to allow them to encompass the object without making contact with it. Then the thumb is slowly moved toward the object until the sensors detect contact between the thumb and the object. Next, the index finger follows the same movement. After detecting contact, the positions of the two contact locations are noted, and the fingers are backed off the object so that they are no longer in contact. The arm and hand are moved a small amount along the axis of the explored object, and the process is repeated. This exploratory procedure ends when one of the fingers moves toward the object and fails to make contact. (The location of the object and its axis are not currently determined autonomously, but with human aid.)
The detection of contact and conversion to Cartesian coordinates is a process that requires several steps. The fingers are moved toward the object in a number of discrete intervals. After each movement, two checks are performed. First, did the tactile sensor detect contact? And second, did the finger move the entire distance that was commanded? If the tactile sensor detects contact, then the location of the center of contact region is found. To find the center of the contact, the first moments of the array are taken. Then a transformation is performed from the fingertip coordinate frame to the hand coordinate frame, and finally, from the hand coordinate frame to world coordinates. The second check is that the finger does not move the entire distance commanded (and there is no tactile contact). This event would signal that something is impeding a finger from moving. In this case, no centroid of the contact region is found and the data point is thrown out. Currently, after detecting contact that does not involve the tactile sensor, the exploratory procedure continues looking for valid contact points along the original search axis.

We have performed a series of experiments that try to recover the shape of a number of different solids of revolution including a wine bottle, a beer bottle, a coke bottle and an Orangina soft drink bottle (a flask like object). The procedure begins with exploring the object along an exploration axis that is assumed to be perpendicular to the support table (but can be inferred from vision sensing described below). The points generated from these contour traces are then linked into a set of linear contour segments. Circular cross section curves are then fit perpendicular to the exploration axis and including trace points from each of the contours. The recovered shapes are shown in figure 6. The shapes are clearly distinguishable from this sparse data. An additional and important discriminating characteristic is actual 3-D size and volume which are calculable from these representations.

4.6. Determining an Exploration Axis

Determining the exploration axis is a key part of the contour following EP. Knowing in which direction to trace the object is important to higher level recovery procedures which need to use this information in the recognition process. Once the hand makes contact with the object, it explores the contour along a known axis which we calculate a priori. We are currently implementing a vision based technique to determine this axis. Our method of visual recovery of the exploration axis exploits the recent work of Wolff [35] in stereo line matching. Point-based stereo techniques tend to be unreliable in that multiple correspondences between images can cause mismatches and error. More stable matching can occur using larger primitives such as lines [13]. Even using line-based matching, problems can still occur. Matching the endpoints of lines can be prone to errors in the output of the line finder which may break a single line into multiple segments due to differing edge strengths along the line. The problem here is that 3-D depth is being computed, which requires an absolute correspondence of points (whether from point-based or line-based methods).

Our method alleviates this dependence on absolute matching of unstable primitives to generate 3-D depth. All we require of the algorithm is an orientation vector in 3-D. We do not need to have its absolute depth, but need to generate a match between a family of parallel lines sharing the same orientation. This orientation can then be used by the active hand as the exploration axis. The 3-D depth has already been determined from the contact of the hand with the object. Given this 3-D depth from tactile contact, we can follow the 3-D axis determined by the line based stereo matcher to continue our exploration.

It is important to note that this method is less sensitive to matching errors and baseline measurement, another common cause of stereo error. In addition, it is also less prone to the effects of physical point mismatches as the baseline increases, since we are still matching a larger entity, the line itself. Intuitively, the method creates a 3-D plane in space from the camera center and any two points on the line. This plane and a similar plane from the other camera are all that are needed to create a 3-D intersection line which we can use as the exploration axis.

As there are many lines in a scene, we have to choose a criteria for deciding which lines constitute the axis of the object. For exploration purposes, we simply want to discover a maximum length line which will serve as an axis. In most cases, this is part of the visual occluding contour of the object, which is exactly the axis we desire for active tactile exploration.

5. SUMMARY

We have described a set of exploratory procedures using touch sensing that can serve as a front end to a multi-sensor object recognition system. The EP's can be used in a coarse to fine sensing strategy that tries to build shape descriptions at a number of levels. An important feature of this system is the multiple representations used in recovering and reasoning about shape. The first EP, grasping by containment uses a global volumetric recovery method that is stable and efficient with extremely sparse amounts of data. It can be used as a precursor to more detailed fine shape recovery using either the planar surface explorer or a 3-D surface contour EP that can be used to recover solids of revolution.

In the future, we hope to link all the exploratory procedures into a fully autonomous system that will be able to use gross object structure as a generator of sensing hypothesis for the finer level EP's. In this way we hope to be able to recover the shape of more complex objects using tactile and visual processing.

6. ACKNOWLEDGEMENTS

This work was supported in part by DARPA contract N00039-84-C-0165, NSF grants DMC-86-05065, DCR-86-08845, CCR-86-12709, IRI-86-57151, North American Philips Laboratories, and the AT&T Foundation. Thanks to Ken Roberts for helping acquire the superquadric recovery data and helping to set up and calibrate the hand.

References

Figure 1: Utah-MIT hand with tactile sensors mounted.

Figure 2: Hardware Overview.

Figure 3: Object Database.

Figure 4: Recovered shape of cylinder, block, wedge, lightbulb and funnel.
Figure 5: Planar Surface Explorer tactile contacts on 2 planar surfaces of a rectangular block.

Figure 6: Recovered solids of revolution from surface contour explorer (left to right wine bottle, coke bottle, beer bottle, Orangina bottle).