The Community for Technology Leaders
Scientific and Statistical Database Management, International Conference on (2006)
Vienna, Austria
July 3, 2006 to July 5, 2006
ISSN: 1551-6393
ISBN: 0-7695-2590-3
pp: 33-44
Doron Rotem , Lawrence Berkeley National Laboratory, UC Berkeley
Kurt Stockinger , Lawrence Berkeley National Laboratory, UC Berkeley
Kesheng Wu , Lawrence Berkeley National Laboratory, UC Berkeley
<p>Bitmap indices have been widely used in scientific applications and commercial systems for processing complex, multi-dimensional queries where traditional tree-based indices would not work efficiently. A common approach for reducing the size of a bitmap index for high cardinality attributes is to group ranges of values of an attribute into bins and then build a bitmap for each bin rather than a bitmap for each value of the attribute. Binning reduces storage costs, however, results of queries based on bins often require additional filtering for discarding false positives, i.e., records in the result that do not satisfy the query constraints. This additional filtering, also known as candidate checking, requires access to the base data on disk and involves significant I/O costs.</p> <p>This paper studies strategies for minimizing the I/O costs for candidate checking for multi-dimensional queries. This is done by determining the number of bins allocated for each dimension and then placing bin boundaries in optimal locations. Our algorithms use knowledge of data distribution and query workload. We derive several analytical results concerning optimal bin allocation for a probabilistic query model. Our experimental evaluation with real life data shows an average I/O cost improvement of at least a factor of 10 for multi-dimensional queries on datasets from two different applications. Our experiments also indicate that the speedup increases with the number of query dimensions.</p>

D. Rotem, K. Wu and K. Stockinger, "Minimizing I/O Costs of Multi-Dimensional Queries with Bitmap Indices," 18th International Conference on Scientific and Statistical Database Management(SSDBM), Vienna, 2006, pp. 33-44.
88 ms
(Ver 3.3 (11022016))