On the Theory of Average Case Complexity

Shai Ben-David*
Benny Chor
Oded Goldreich†

Michael Luby‡

Dept. of Computer Science
Technion, Haifa, Israel

Dept. of Computer Science
University of Toronto, Canada

ICSI, Berkeley, CA 94704

Abstract

This paper takes the next step in developing the theory of average case complexity initiated by Leonid A. Levin. Previous works [Levin 84, Gurevich 87, Venkatesan and Levin 88] have focused on the existence of complete problems. We widen the scope to other basic questions in computational complexity. Our results include:

- the equivalence of search and decision problems in the context of average case complexity;
- an initial analysis of the structure of distributional-NP under reductions which preserve average polynomial-time;
- a proof that if all distributional-NP is in average polynomial-time then non-deterministic exponential-time equals deterministic exponential time (i.e., a collapse in the worst case hierarchy);
- definitions and basic theorems regarding other complexity classes such as average log-space.

An extended abstract appears in the proceedings of STOC 1989.

*Supported by Technion V.P.R. Fund - E.N.J. Bishop Research Fund.
†Supported by grant No. 86-00301 from the United States - Israel Binational Science Foundation (BSF), Jerusalem, Israel.
‡Partially supported by a Natural Sciences and Engineering Research Council of Canada operating grant A8092 and by a University of Toronto grant.