SC06 Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC Committee</td>
<td>IX</td>
</tr>
<tr>
<td>Advisory Committee</td>
<td>X</td>
</tr>
<tr>
<td>Steering Committee</td>
<td>XI</td>
</tr>
<tr>
<td>Technical Program Committee</td>
<td>XII</td>
</tr>
<tr>
<td>Panel</td>
<td></td>
</tr>
<tr>
<td>Is High-Performance, Reconfigurable Computing the Next Supercomputing Paradigm?</td>
<td>XV</td>
</tr>
<tr>
<td>100 Years of Digital Data</td>
<td>XIX</td>
</tr>
<tr>
<td>Data Intensive Computing</td>
<td>XX</td>
</tr>
<tr>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>The Potential Energy Efficiency of Vector Acceleration</td>
<td>1</td>
</tr>
<tr>
<td>The Design Space of Data-Parallel Memory Systems</td>
<td>2</td>
</tr>
<tr>
<td>A Performance Comparison through Benchmarking and Modeling of Three Leading Supercomputers: Blue Gene/L, Red Storm, and Purple</td>
<td>3</td>
</tr>
<tr>
<td>Memory</td>
<td></td>
</tr>
<tr>
<td>Sequoia: Programming the Memory Hierarchy</td>
<td>4</td>
</tr>
<tr>
<td>CellSs: A Programming Model for the Cell BE Architecture</td>
<td>5</td>
</tr>
<tr>
<td>A Memory Model for Scientific Algorithms on Graphics Processors</td>
<td>6</td>
</tr>
<tr>
<td>Interconnect Routing and Scheduling</td>
<td></td>
</tr>
<tr>
<td>Adaptive Routing in High-Radix Clos Networks</td>
<td>7</td>
</tr>
<tr>
<td>A Near-Optimal Real-time Hardware Scheduler for Large Cardinality Crossbar Switches</td>
<td>8</td>
</tr>
<tr>
<td>Level-Wise Scheduling Algorithm for Fat Tree Interconnection Networks</td>
<td>9</td>
</tr>
<tr>
<td>Scalable Systems Software</td>
<td></td>
</tr>
<tr>
<td>A Software Based Approach for Providing Network Fault</td>
<td></td>
</tr>
</tbody>
</table>
Tolerance in Clusters Using the uDAPL Interface: MPI Level
Design and Performance Evaluation...10

Problem Diagnosis in Large-Scale Computing Environments...............11

From Mesh Generation to Scientific Visualization: An End-to-End
Approach to Parallel Supercomputing..12

MPI and Communications
High-Performance and Scalable MPI over InfiniBand with
Reduced Memory Usage: An In-Depth Performance Analysis..............13

Adaptive, Transparent Frequency and Voltage Scaling of
Communication Phases in MPI Programs..14
Software Routing and Aggregation of Messages to Optimize the
Performance of the HPCC Randomaccess Benchmark..........................15

MPI Tools and Performance Studies
MPI Performance Analysis Tools on Blue Gene/L..................................16

Quantifying the Potential Benefit of Overlapping Communication
and Computation in Large-Scale Scientific Applications.......................17

Blocking vs. Non-Blocking Coordinated Checkpointing for
Large-Scale Fault Tolerant MPI..18

Grid Allocation and Reservation
Improving Grid Resource Allocation via Integrated Selection and Binding.....19

Toward a Doctrine of Containment: Grid Hosting with Adaptive
Resource Control..20

Grid Capacity Planning with Negotiation-based Advance Reservation
for Optimized QoS..21

Grid Applications
Parallel Genomic Sequence-Searching on an Ad-Hoc Grid: Experiences,
Lessons Learned, and Implications...22

Sustainable Adaptive Grid Supercomputing: Multiscale Simulation
Grid Networks and Portals
Revisiting Web Server Workload Invariants in the Context of Scientific Web Sites...25

End-System Aware, Rate-Adaptive Protocol for Network Transport in LambdaGrid Environments...26

Evaluating Grid Portal Security...27

Grid Scheduling and Protocols
Supporting Dynamic Migration in Tightly Coupled Grid Applications.............28

Benchmarking XML Processors for Applications in Grid Web Services........30

Grid Resource Management
CRUSH: Controlled, Scalable, Decentralized Placement of Replicated Data........31

CycleMeter: Detecting Fraudulent Peers in Internet Cycle Sharing.....................32

Designing a Runtime System for Volunteer Computing..............................33

Data Management and Query
Hypergraph Partitioning for Automatic Memory Hierarchy Management........34

Multiple Range Query Optimization with Distributed Cache Indexing...............35

Estimating Query Result Sizes for Proxy Caching in Scientific Database Federations...36

Imaging and Visual Analysis
Toward Real-Time, Image Guided Neurosurgery Using Distributed and Grid Computing………………………………………………………………….37

Large Image Correction and Warping in a Cluster Environment………………..38

Detecting Distributed Scans Using High-Performance Query-Driven Visualization……………………………………………………………………39

Biology
PBPI: A High Performance Implementation of Bayesian Phylogenetic Inference………………………………………………………………….40

Locality and Parallelism Optimization for Dynamic Programming Algorithms in Bioinformatics…………………………………………………….41

Computing Large Sparse Multivariate Optimization Problems with an Application in Biophysics……………………………………………………42

Molecular Dynamics
Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters………………………………………………………………..43

Blue Matter: Approaching the Limits of Concurrency for Classical Molecular Dynamics……………………………………………………………44

Preliminary Investigation of Advanced Electrostatics in Molecular Dynamics on Reconfigurable Computers…………………………………………45

Particles and Continuum
Nested OpenMP for Efficient Computation of 3D Critical Points in Multi-Block CFD Datasets…………………………………………………….46

Modeling Pulse Propagation and Scattering in a Dispersive Medium: Performance of MPI/OpenMP Hybrid Code……………………………47

Performance Modeling and Optimization of a High Energy Colliding Beam Simulation Code……………………………………………………48
Tools and Techniques for Performance
Architectures and APIs: Assessing Requirements for Delivering FPGA Performance to Applications ... 49

Exploiting the Performance of 32-Bit Floating Point Arithmetic in Obtaining 64-Bit Accuracy ... 50

FFT Program Generation for Shared Memory: SMP and Multicore 51

Blue Gene System Software
Topology Mapping for Blue Gene/L Supercomputer 52

Designing a Highly-Scalable Operating System: The Blue Gene/L Story 53
Design and Implementation of a One-Sided Communication Interface for the IBM eServer Blue Gene Supercomputer 54