The Community for Technology Leaders
RSS Icon
Subscribe
San Jose, California
Feb. 24, 2002 to Feb. 25, 2002
ISBN: 0-7695-1480-4
pp: 0151
Yucel Saygin , Sabanci University
Vassilios S. Verykios , Drexel University
Ahmed K. Elmagarmid , Purdue University
ABSTRACT
The current trend in the application space towards systems of loosely coupled and dynamically bound components that enables just-in-time integration jeopardizes the security of information that is shared between the broker, the requester, and the provider at runtime. In particular, new advances in data mining and knowledge discovery, that allow for the extraction of hidden knowledge in enormous amount of data, impose new threats on the seamless integration of information. In this paper, we consider the problem of building privacy preserving algorithms for one category of data mining techniques, the association rule mining. We introduce new metrics in order to demonstrate how security issues can be taken into consideration in the general framework of association rule mining, and we show that the complexity of the new heuristics is similar to this of the original algorithms.
INDEX TERMS
Database Security, Database Inference, Association Rules, Rule Hiding, Information Downgrading
CITATION
Yucel Saygin, Vassilios S. Verykios, Ahmed K. Elmagarmid, "Privacy Preserving Association Rule Mining", RIDE, 2002, Research Issues in Data Engineering, International Workshop on, Research Issues in Data Engineering, International Workshop on 2002, pp. 0151, doi:10.1109/RIDE.2002.995109
82 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool