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Abstract 
Starting from the Petri net model of Occam, which is 
illustrated in [ I ]  and uses I-safe PT nets, the paper 
develops, on the top of it, a timed net model, using 
Generalized Stochastic Petri Nets (GSPN), to allow a 
performance analysis of Occam programs. As an example, 
we carry out the comparison of different placements of an 
Occam program over a given set of distributed processors. 

1 Introduction 

The development of a Petri net model of Occam 
programs [ 11 opens a wide range of possible applications, 
sketched in [2], based on the qualitative analysis 
techniques typical of net models. To extend the analysis 
of Occam programs to performance evaluation, in the 
following (section 2) we develop, on the top of it, a timed 
net model, using, in particular, the Generalized Stochastic 
Petri Nets (GSPN) as defined in [3]. We then present 
(section 3) the application of the GSPN model for 
comparing different program placements, i.e., for 
selecting the best solution among the possible 
assignments of the processes of an Occam program to a 
given set of distributed processors. Crucial for Occam, 
such field is today widely studied by means of different 
methodologies and tools [4,5]. 

First of all, le& us therefore briefly sketch the general 
features characterizing the 1-safe PT net model of Occam. 
It has been developed starting from an abstract syntax 
which includes a suitable subset of Occam2 161 (atomic 
actions; SEQ, IF, ALT, WHILE, PAR, PLACED PAR, 
PRI ALT, PRI PAR compositions; a subset of data and 
channels descriptions) together with some extentions to 
enhance the significancy of the model in the more general 
framework of (a wider class of) concurrent programming 
languages. The net model expresses the semantics of 
programs recognized by such an abstract syntax. 

Since the very beginning, we aimed at developing a 
Petri net model of Occam, satisfying the modularity (the 
possibility to autonomously represent program modules 
within the correspondent model modules) and 
compositionality (the possibility to suitably compose 
simple modules to build more complex ones) 
requirements. Since the processis the structural basic 

computational component of Occam programs, we 
consider the modularity of a program in terms of its 
component processes. In the net model each process has 
its own corresponding process-box. A process-box [ 1,7] 
consists of a labelled net which describes the control flow 
of an Occam process; two sets of places and two sets of 
transitions (called interfaces) which connect the process to 
its extemal environment. The entry and exit interfaces are 
two sets of places which are the pre-set, respectively the 
post-set, of the net which models the process. The input 
and output interfaces are two sets of transitions which 
represent the communication activities of input, 
respectively of output, of the process with its 
environment. 

Given an Occam program, the compositional 
construction of the control flow model takes place 
through subsequent steps: first, a process-box for each 
atomic action is obtained; then these process-boxes are 
composed, step by step, by using suitable semantic 
operators defined (one for each syntactic operator of the 
language) to compose process-boxes as the Occam 
operators compose processes. Finally the suitable initial 
marking is given. In such a way, the process-box 
corresponding to the most extemal process, i.e. to the 
whole program, is produced (the details of its construction 
are here omitted for space reasons; see [1,2,8,9], where 
also the handling of data and priorities, which goes 
beyond the goal of this paper, is considered). 

2 A GSPN model of Occam 

To develop in $2.2, on the top of the 1-safe PT net 
model of Occam, the GSPN model, first ($2.1) we briefly 
recall some notions of the GSPN approach. 

2 . 1  GSPN and preselection policies 

A GSPN system (or GSPN for short) is a 7-tuple 
I=(S  ,T,W,n,H,A,Mo), where the underlying net system 
N=(S,T,W,n,H,Mo) is a PT system with priorities 
(n:T+tN+) and inhibitor arcs (H:SxT+M), with the 
property to be confusion-free at priority level greater than 
zero. We will consider only two priority levels, 
corresponding respectively to timed transitions (with 
priority zero) and to immediate transitions (with priority 
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greater than zero). The function A:T+R+ associates with 
each timed transition its probabilistic exponentially 
distributed delay, and with each immediate transition 
(without delay) the suitable firing probability. Markings 
which enables timed transitions only are said to be 
tangible, while markings which enables immediate 
transitions are said to be vanishing. When several 
transitions have concession under a marking M, the 
priority level determines which transition(s) are actually 
enabled to fire. Therefore, in a vanishing marking M, 
only immediate transitions may be enabled, since they 
have priority over timed transitions. In particular, only 
one immediate transition ti within each ECS (Extended 
Conflict Set [3]) is selected, according to a probability 
distribution determined by the associated weights. Let us 
remark that there is true concurrency among immediate 
transitions belonging to different ECS. 

Timed transitions are actually enabled only in tangible 
markings. When several timed transitions are enabled in 
the same tangible marking M, firing rates are used to 
probabilistically select one transition to fire. The 
semantics of the competition between simultaneously 
enabled timed transitions is called race policy and implies 
that all transitions are assumed to compete with each 
other: the one that actually fires is the one for which the 
firing delay is minimum. This semantics sequentializes 
the firing of simultaneously enabled timed transitions; 
however, thanks to the absence of memory typical of the 
exponential distribution on which the delays are sampled 
[3], we can think of the actions associated with these 
transitions as actually going on concurrently, while their 
completions, represented by the (istantaneous) transition 
firings, are in sequence. This allows some degree of 
concurrency between timed transitions in a GSPN. This 
concurrency is exploited, in our case, to properly model 
the PAR composition. 

In order to model the ALT composition we need a 
different policy to select simultaneously enabled (and 
conflicting) timed transitions, a policy based on additional 
specifications which are independent from the associated 
delays. One method is to define a probability distribution 
function over the set of enabled transitions in a given 
marking and to use it to (pre)select the next transition to 
fire. The implied semantics now is that transitions which 
are enabled but not preselected cannot fire: this behaviour 
properly models situations in which only one between 
several possible alternatives has to be choosen on the 
basis of information independent from time. 

In the following we use a local preselection policy 
[lo] by coupling a restricted use of the preselection policy 
with the race policy. In particular we apply the 
preselection at a local level, i.e. restricted to suitable sets 
of transitions, called Local Preselection Sets (LPS). In a 
given marking which enables transitions belonging to 
these sets, the next transition to fire is identified by first 
preselecting, according to the probability distribution 
locally defined, one enabled transition (if it exists) within 

each LPS, and then choosing, among the preselected 
transitions, the one for which the associated delay is 
minimum. Let us notice that this policy allows us: (1) to 
solve the conflicts within the net on the basis of time- 
indepentent information, thanks to the local preselection; 
and, (2) to represent in the model some degree of 
concurrency between the preselected transitions, thanks to 
the race policy. 

The local preselection policy among conflicting 
transitions within an ECS is represented on the net by 
using probabilistic arcs. We define a function P:SxT+IR+ 
which associates with an (input) arc of each transition 
belonging to the ECS, a weight representing the 
preselection probabilitiy of that arc in the resolution of a 
conflict (the weights associated with the remaining arcs of 
the net are obviously to be intended equal to 1). The 
definition of the suitable preselection policy consists of 
the identification of the ECS to be used as LPS. In our 
case this is presented in the next section, and then 
illustrated by the Example 1. 

2 . 2  The GSPN model construction and 
validation 

The GSPN model for Occam consists of two main 
components. The structural component is built up 
according to the construction sketched in Section 1 which 
yelds a I-safe PT system without priorities and inhibitor 
arcs (therefore in the following we will denote a GSPN 
system modelling an Occam program simply by 
C=(S,T,W,A,Mo). The stochastic component consists of 
the function A:T+ IR+, which associates with each 
transition a parameter representing, in the case of timed 
transitions, the rate of the exponential distribution of the 
associated delay, and in the case of immediate transitions, 
the weight used to determine the firing probability. The 
idea is to associate with each timed transition t 
corresponding to an atomic action of Occam, an 
exponentially distributed delay time with rate 3c, defined as 
follows: 
- kkip and hass represent respectively the execution time 
of the SKIP and the assigment processes; 
- hstop: the value 3cstop, representing the execution time 
of the STOP process, does not affect the semantics 
espressed by the GSPN model since the net model 
proposed for the STOP action [l] represents its semantics 
without involving any proper transition; 
- transitions corresponding to matched communications 
are associated with a parameter A.pomm which represents 
the phisical communication time, i.e. the time necessary 
to the actual data transfer, while the syncronization 
(rendezvous) delays between input and output actions are 
instead captured by the causal structure of the net. 

To determine the parameters values to be associated 
with each atomic action, it is useful to recall that the 
mean delay time of a transition k in a GSPN is dk=l/hk. 
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The choice of the parameter kk may hence account for the 
mean execution time of the corresponding Occam action 
in some implementation. By the definition of the A 
function, the GSPN model is completed. 

It is easy to show that, for each Occam composition, 
the GSPN model preserves the qualitative behaviour of 
the untimed one, and is therefore consistent with the 
Occam semantics. The proof (cf.[2]) is straightforward in 
the case of SEQ, IF, PAR and WHILE compositions, 
while it is worth discussing the ALT. 

The alternative composition (ALT), is characterized by 
a non-deterministic choice between the possible 
alternatives: in the 1-safe PT model the entry transitions 
of each process-box corresponding to each component 
process are in conflict with each other. According to the 
standard interpretation of the original GSPN, the conflict 
between two or more transitions is solved in favour of the 
one with the shortest associated delay; this behaviour 
obviously does not correspond to the non-deterministic 
semantics of the ALT composition. The previously 
discussed local preselection policy plays its role here. We 
choose, as LPS, the actions contained in each ALT 
composition, therefore called in the following ALTS, 
standing for ALT Sets. This means to define a probability 
distribution function over each set of transitions in 
structural conflict. According to the local preselection 
policy, one enabled transition is selected within each 
ALTS, and then the race policy competition applies to 
these preselected transitions and to the other transitions of 
the model possibly enabled. It is worth noticing that the 
preselection applies only to the resolution of conflicts 
which actually occur: therefore, if two (or more) 
transitions are in structural conflict, but some of them is 
not enabled, the preselection acts only over the enabled 
transitions. This behaviour correctly models the Occam 
ALT composition in which the non-deterministic choice 
between two or more alternatives takes places only among 
those which may at the moment be executed. 

Let us notice that the assignment of suitable values to 
the weights associated with probabilistic arcs allows the 
construction of the model either according to the 
'theoretic' semantics of Occam - by assigning equal 
probabilities to each conflicting transition - or reflecting 
the peculiarities of an implementation of the language in 
some running environment - by assigning particular 
probability values - when a greater correspondence of the 
GSPN model to the running environment is requested. 
Each implementation in fact solves the non-determinism 
of the ALT composition by a choice between the possible 
alternatives and the model can in this way account for it. 

Let us also point out that, in general, the obtained 
GSPN consists of timed transitions only. Therefore the 
simpler SPN model 131 could be used. The choice of 
GSPN allows us to use the same kind of timed model 
even when considering a variant of the basic model, called 
7-model (cf. [2,81), which makes use of unobservable 
immediate 7-transitions. 
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3 Program placement analysis 

In this section we introduce a net-based notion of 
program placement, where by placement we intend the 
different possible assignments of the processes of a 
program to several available processors, disregarding the 
topology of the underlying phisical net of processors. 
Within Occam, the placement is determined by the use of 
the PLACED PAR composition that allows the 
distribution of a program over several processors 
assigning each simple or composed process to a particular 
processor. 

3.1 Extending the net model to capture 
placement 

According to [ l l ] ,  the placement of a program 
modelled by a 1-safe F T  net can be defined as follows. 
Given a 1-safe PT system N=(S,T,W,Mo), a processor 
assignment (or configuration) of N is a pair C=(F',f), 
where P is a finite set of places, called the processors, 
satisfying SflP=0 and ET+P is a function yielding, for 
each transition tcT, the place p=f(t)EP corresponding to 
the processor which executes the activities represented by 
t. 

Given a placed Occam program and its 
corresponding GSPN model C(T)=(S,T,W,A,Mo), the 
placement is represented by a processor assignment 
C=(P,f) defined as follows: 
- the set P contains a place for each processor named 
within a PLACED PAR; 
- the function f associates with each process (transition) 
contained within any arm of a PLACED PAR the 
corresponding processor (place). 

The GSPN C,(r)=(S*,T*,W*,A*,Mo*) including the 
placement C=(P,f) is defined extending C(r) in the 
following way: S*=SuP; T*=T; W*(s,t)=W*(t,s)=l for 
each scP, tcT such that f(t)=s; W*(s,t)=W(s,t) and 
W*(t,s)=W(t,s) for each scS, tcT; A*=A; Mo*=MoUP. 

Let us notice that a placement increases the number of 
conflicts in the net to model the competition of processes 
for processors. These further conflicts require the use of a 
suitable preselection policy assigning equal probabilities 
to the probabilistic arcs outgoing from processor places to 
represent the equal sharing of a processor among several 
processes (unless otherwise specified). Such policy 
represents the concurrency reduction due to processor 
sharing, and then is the basis for distinguishing among 
the various program placements from the performance 
evaluation perspective. It is meaningful to consider the set 
of possible placements LI=(Ci=(Pi,fi)) of a system C(r) 
and compare the augmented systems E&) with respect 
to their execution times, since all of them generate the 
same set of reachable markings but differ in the degree of 



concurrency allowed among their transitions. 

3 . 2  Placement comparison by analysis of 
the GSPN model 

In general several performance indices [3] can be 
associated with a GSPN; when applied to our case, they 
yield different performance indices of Occam programs. 
For instance, the probability of an event can be used to 
determine the probability of execution of a program 
module, while thefiring frequency of a transition gives 
the average number of utilizations of a module; the 
average delay in traversing a net allows an estimation of 
the average execution time of a program or a module. 

Let us consider the Average Delay in Traversing a Net 
in steady-state (ADTN for short), for evaluating the time 
taken to reach the marking of the exit interface places of 
the (GSPN) process-box of a program from the marking 
of its entry interface places. We define a probabilistic 
average optimality criterion to compare different 
placements in the following way: let C be a GSPN, q l l  a 
natural number (of processors) and CI=(Pl , f l )  e 
C2=(P2,f2) two placements of C, with IP11=IP2I=q, then 
C1 is said to be less time consuming than C2 (C1 <C2) 
iff ADTNCcl <AD"&2. 

To compare the ADTNs of GSPNs, we must recall 
that GSPN are equivalent to continuous-time Markov 
Chains (MC) defined over a set of states isomorphic to 
the set of tangible markings of the net [3]. The 
equilibrium solutions of this MC provide the probability 
distributions on the markings of the GSPN leading to the 
performance indices related to the net behaviour. During 
the analysis of a GSPN we perform a 'closure' of the net 
to make its Reachability Graph (RG) strongly connected; 
this is in fact a sufficient condition to the existence of the 
steady-state of the equivalent MC. Let us summarize the 
analysis steps of a GSPN to compute its ADTN: 

'closure' of the GSPN by-the introduction of a 
fictitious transition t', whose parameter h' is known 
(e.g., n'=l), which connects the exit interface places of 
the net with the entry ones; 
construction of the RG of the net according to the 
local preselection policies specified in the model; 
construction of the infinitesimal generator matrix, 
denoted with Q; 
computation of the steady-state solution of the model 
by solving the system of linear equations: 

l I .Q=O 
lhi= 1 

where Zi denotes the steady-state probability of 
marking Mi and where l l = ( n 1 ,  ..., Zn) is the 
equilibrium probability mass function @mf) over the 
n reachable markings; 
computation of the ADTN=l/Zex-~tI=l/Zex-l, of the 
net, where Xex is the probability associated with the 

exit interface of the net and 4*=1 is the average 
execution time of the activity associated with the 
introduced transition t'. 

3 . 3  Some application examples 

The construction and analysis of the GSPN models of 
Occam programs are illustrated by the two following 
examples. The first one mainly shows how the use of the 
local preselection policy, associated with the possibility 
of suitable choosing the probability parameters, allows us 
to adapt the model either to the formal semantics of 
Occam or to a particular implementation, producing 
faithful performance eveluations. The second one applies 
the placement comparison method presented in $3.2 and 
sketches how the modularity of the net model can be 
exploited to jump from simple programs to larger ones 
(this point will be reconsidered in the conclusions). 

Example 1 
Given the Occam program: PAR 

ALT 
P1 
P2 

P3 

the corresponding GSPN model is given in Fig. 1, where, 
e.g., we assign to the timed transitions the following 
rates: 'hl=l, h2=3, 313=2, h'=l (t' realizes the 'closure' of 
the net). 

s l  s2 

t l  

s3 s4 

Fig. 1 

Through the construction of the reachability graph and 
of its corresponding infinitesimal generator matrix Q, we 
obtain the steady-state solution and then the ADTN of the 
net: ADTN= l/Itex- 1=(48p+57)/90. By assuming p=1/2 
(which corresponds to equiprobable altematives, according 
to the formal Occam semantics) we obtain ADTN=OQ; 
otherwise, according to different implementations of the 
language, let p assume different values (e.g. p=l; p=O; 
p=2/3) yielding different ADTN (resp.: 1.16; 0,63; 0,98). 

Example 2 
Given the Occam program: PAR 

P1 
P2 
P3 
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and two processors PR1 and PR2 available, let us 
consider the two following placements C1 and C2: 

c1: c2: 
PLACED PAR PLACED PAR 

PROCESSOR PR1 PROCESSOR PR1 

P1 PROCESSOR PR2 
P2 PAR 

PROCESSOR PR2 P2 
P3 P3 

PAR P1 

The two GSPN models, corresponding respectively to 
C1 and C2, are given in Fig.2. Processes PI, €9 and P3 
are respectively modelled by the transitions t l ,  t2 and t3 
associated with the parameters 111=1, h2=10/9 (i.e. we 
assume that P2 is the Occam process studied in Example 
1) and h3=3. In both cases the parameter associated with 
the closure transition t' is assumed to be 11'=l. The 
analysis of the two nets, according to the procedure 
presented above, yields respectively the values 
ADTN1=2,14 and ADTN2=1,93, i.e. placement C2 is 
less time consuming then C 1. 

t' 

t' t3 

Fig.2 

4 Concluding remarks and future work 

Starting from the 1-safe net model of Occam, we have 
developed a GSPN model which supports program 
placement analysis, i.e. the identification of the best 
placement among the possible placements of the 
processes of an Occam program to a given set of 
processors. Let us notice that to fully achieve this goal, 
the model should be extended to deal with the topological 
characteristics of the available net of processors. Future 
(and automated) applications could be extended, e.g., to 
the optimization of the level of parallelism for an Occam 

program, as discussed in [2]. 
In respect of the applicability of the GSPN model of 

Occam programs, in the case of red-life examples the sue 
of the (underlying) net model might affect the feasability 
of the ADTN computation. As a possibility to face with 
this problem we can exploit the modularity and 
compositionality features of the basic model. By 
exploiting the process-box to define suitable net 
morphisms, one can define not only models in which it 
exists a bijection among the atomic actions of the 
program and the net transitions, but also models in which 
a transition represents a program module, i.e., in Occam, 
a non-atomic process. The delay to be associated with 
such a, let's say, non-atomic transition, is the outcome of 
the computation of the ADTN on the net modelling the 
corresponding non-atomic process; these partial results 
may then be used to obtain a quantitative analysis of the 
whole program, as sketched in Example 2 above. The 
precise definition ot this technique is straightforward, but 
for two aspects we would deserve it a special attention: (i) 
the handling of the PRI PAR compositions, which has 
been recognized as intrinsecally non-compositional [2]; 
and (ii) the definition of the morphism when 
communication transitions are involved. 

We finally notice that, when real-life examples are 
considered, both the qualitative analysis of the PT model 
and the quantitative analysis of the GSPN one, heavily 
relies on the availability of software tools [12] for the 
model construction and solution. 
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