
From Basic to Timed Net Models of Occam:
an Application to Program Placement

Oliver Botti and Fiorella De Cindio

Dipartimento di Scienze dell'lnformazione
Universitd degli Studi di Milano

Via Comelico, 39 - 20135 Milano (ITALY)

Abstract
Starting from the Petri net model of Occam, which is
illustrated in [I] and uses I-safe PT nets, the paper
develops, on the top of it, a timed net model, using
Generalized Stochastic Petri Nets (GSPN), to allow a
performance analysis of Occam programs. As an example,
we carry out the comparison of different placements of an
Occam program over a given set of distributed processors.

1 Introduction

The development of a Petri net model of Occam
programs [11 opens a wide range of possible applications,
sketched in [2], based on the qualitative analysis
techniques typical of net models. To extend the analysis
of Occam programs to performance evaluation, in the
following (section 2) we develop, on the top of it, a timed
net model, using, in particular, the Generalized Stochastic
Petri Nets (GSPN) as defined in [3]. We then present
(section 3) the application of the GSPN model for
comparing different program placements, i.e., for
selecting the best solution among the possible
assignments of the processes of an Occam program to a
given set of distributed processors. Crucial for Occam,
such field is today widely studied by means of different
methodologies and tools [4,5].

First of all, le& us therefore briefly sketch the general
features characterizing the 1-safe PT net model of Occam.
It has been developed starting from an abstract syntax
which includes a suitable subset of Occam2 161 (atomic
actions; SEQ, IF, ALT, WHILE, PAR, PLACED PAR,
PRI ALT, PRI PAR compositions; a subset of data and
channels descriptions) together with some extentions to
enhance the significancy of the model in the more general
framework of (a wider class of) concurrent programming
languages. The net model expresses the semantics of
programs recognized by such an abstract syntax.

Since the very beginning, we aimed at developing a
Petri net model of Occam, satisfying the modularity (the
possibility to autonomously represent program modules
within the correspondent model modules) and
compositionality (the possibility to suitably compose
simple modules to build more complex ones)
requirements. Since the processis the structural basic

computational component of Occam programs, we
consider the modularity of a program in terms of its
component processes. In the net model each process has
its own corresponding process-box. A process-box [1,7]
consists of a labelled net which describes the control flow
of an Occam process; two sets of places and two sets of
transitions (called interfaces) which connect the process to
its extemal environment. The entry and exit interfaces are
two sets of places which are the pre-set, respectively the
post-set, of the net which models the process. The input
and output interfaces are two sets of transitions which
represent the communication activities of input,
respectively of output, of the process with its
environment.

Given an Occam program, the compositional
construction of the control flow model takes place
through subsequent steps: first, a process-box for each
atomic action is obtained; then these process-boxes are
composed, step by step, by using suitable semantic
operators defined (one for each syntactic operator of the
language) to compose process-boxes as the Occam
operators compose processes. Finally the suitable initial
marking is given. In such a way, the process-box
corresponding to the most extemal process, i.e. to the
whole program, is produced (the details of its construction
are here omitted for space reasons; see [1,2,8,9], where
also the handling of data and priorities, which goes
beyond the goal of this paper, is considered).

2 A GSPN model of Occam

To develop in $2.2, on the top of the 1-safe PT net
model of Occam, the GSPN model, first ($2.1) we briefly
recall some notions of the GSPN approach.

2 . 1 GSPN and preselection policies

A GSPN system (or GSPN for short) is a 7-tuple
I=(S ,T,W,n,H,A,Mo), where the underlying net system
N=(S,T,W,n,H,Mo) is a PT system with priorities
(n:T+tN+) and inhibitor arcs (H:SxT+M), with the
property to be confusion-free at priority level greater than
zero. We will consider only two priority levels,
corresponding respectively to timed transitions (with
priority zero) and to immediate transitions (with priority

216
TH0386-3/91/oooO/0216/$01.00 0 1991 IEEE

r

greater than zero). The function A:T+R+ associates with
each timed transition its probabilistic exponentially
distributed delay, and with each immediate transition
(without delay) the suitable firing probability. Markings
which enables timed transitions only are said to be
tangible, while markings which enables immediate
transitions are said to be vanishing. When several
transitions have concession under a marking M, the
priority level determines which transition(s) are actually
enabled to fire. Therefore, in a vanishing marking M,
only immediate transitions may be enabled, since they
have priority over timed transitions. In particular, only
one immediate transition ti within each ECS (Extended
Conflict Set [3]) is selected, according to a probability
distribution determined by the associated weights. Let us
remark that there is true concurrency among immediate
transitions belonging to different ECS.

Timed transitions are actually enabled only in tangible
markings. When several timed transitions are enabled in
the same tangible marking M, firing rates are used to
probabilistically select one transition to fire. The
semantics of the competition between simultaneously
enabled timed transitions is called race policy and implies
that all transitions are assumed to compete with each
other: the one that actually fires is the one for which the
firing delay is minimum. This semantics sequentializes
the firing of simultaneously enabled timed transitions;
however, thanks to the absence of memory typical of the
exponential distribution on which the delays are sampled
[3], we can think of the actions associated with these
transitions as actually going on concurrently, while their
completions, represented by the (istantaneous) transition
firings, are in sequence. This allows some degree of
concurrency between timed transitions in a GSPN. This
concurrency is exploited, in our case, to properly model
the PAR composition.

In order to model the ALT composition we need a
different policy to select simultaneously enabled (and
conflicting) timed transitions, a policy based on additional
specifications which are independent from the associated
delays. One method is to define a probability distribution
function over the set of enabled transitions in a given
marking and to use it to (pre)select the next transition to
fire. The implied semantics now is that transitions which
are enabled but not preselected cannot fire: this behaviour
properly models situations in which only one between
several possible alternatives has to be choosen on the
basis of information independent from time.

In the following we use a local preselection policy
[lo] by coupling a restricted use of the preselection policy
with the race policy. In particular we apply the
preselection at a local level, i.e. restricted to suitable sets
of transitions, called Local Preselection Sets (LPS). In a
given marking which enables transitions belonging to
these sets, the next transition to fire is identified by first
preselecting, according to the probability distribution
locally defined, one enabled transition (if it exists) within

each LPS, and then choosing, among the preselected
transitions, the one for which the associated delay is
minimum. Let us notice that this policy allows us: (1) to
solve the conflicts within the net on the basis of time-
indepentent information, thanks to the local preselection;
and, (2) to represent in the model some degree of
concurrency between the preselected transitions, thanks to
the race policy.

The local preselection policy among conflicting
transitions within an ECS is represented on the net by
using probabilistic arcs. We define a function P:SxT+IR+
which associates with an (input) arc of each transition
belonging to the ECS, a weight representing the
preselection probabilitiy of that arc in the resolution of a
conflict (the weights associated with the remaining arcs of
the net are obviously to be intended equal to 1). The
definition of the suitable preselection policy consists of
the identification of the ECS to be used as LPS. In our
case this is presented in the next section, and then
illustrated by the Example 1.

2 . 2 The GSPN model construction and
validation

The GSPN model for Occam consists of two main
components. The structural component is built up
according to the construction sketched in Section 1 which
yelds a I-safe PT system without priorities and inhibitor
arcs (therefore in the following we will denote a GSPN
system modelling an Occam program simply by
C=(S,T,W,A,Mo). The stochastic component consists of
the function A:T+ IR+, which associates with each
transition a parameter representing, in the case of timed
transitions, the rate of the exponential distribution of the
associated delay, and in the case of immediate transitions,
the weight used to determine the firing probability. The
idea is to associate with each timed transition t
corresponding to an atomic action of Occam, an
exponentially distributed delay time with rate 3c, defined as
follows:
- kkip and hass represent respectively the execution time
of the SKIP and the assigment processes;
- hstop: the value 3cstop, representing the execution time
of the STOP process, does not affect the semantics
espressed by the GSPN model since the net model
proposed for the STOP action [l] represents its semantics
without involving any proper transition;
- transitions corresponding to matched communications
are associated with a parameter A.pomm which represents
the phisical communication time, i.e. the time necessary
to the actual data transfer, while the syncronization
(rendezvous) delays between input and output actions are
instead captured by the causal structure of the net.

To determine the parameters values to be associated
with each atomic action, it is useful to recall that the
mean delay time of a transition k in a GSPN is dk=l/hk.

217

The choice of the parameter kk may hence account for the
mean execution time of the corresponding Occam action
in some implementation. By the definition of the A
function, the GSPN model is completed.

It is easy to show that, for each Occam composition,
the GSPN model preserves the qualitative behaviour of
the untimed one, and is therefore consistent with the
Occam semantics. The proof (cf.[2]) is straightforward in
the case of SEQ, IF, PAR and WHILE compositions,
while it is worth discussing the ALT.

The alternative composition (ALT), is characterized by
a non-deterministic choice between the possible
alternatives: in the 1-safe PT model the entry transitions
of each process-box corresponding to each component
process are in conflict with each other. According to the
standard interpretation of the original GSPN, the conflict
between two or more transitions is solved in favour of the
one with the shortest associated delay; this behaviour
obviously does not correspond to the non-deterministic
semantics of the ALT composition. The previously
discussed local preselection policy plays its role here. We
choose, as LPS, the actions contained in each ALT
composition, therefore called in the following ALTS,
standing for ALT Sets. This means to define a probability
distribution function over each set of transitions in
structural conflict. According to the local preselection
policy, one enabled transition is selected within each
ALTS, and then the race policy competition applies to
these preselected transitions and to the other transitions of
the model possibly enabled. It is worth noticing that the
preselection applies only to the resolution of conflicts
which actually occur: therefore, if two (or more)
transitions are in structural conflict, but some of them is
not enabled, the preselection acts only over the enabled
transitions. This behaviour correctly models the Occam
ALT composition in which the non-deterministic choice
between two or more alternatives takes places only among
those which may at the moment be executed.

Let us notice that the assignment of suitable values to
the weights associated with probabilistic arcs allows the
construction of the model either according to the
'theoretic' semantics of Occam - by assigning equal
probabilities to each conflicting transition - or reflecting
the peculiarities of an implementation of the language in
some running environment - by assigning particular
probability values - when a greater correspondence of the
GSPN model to the running environment is requested.
Each implementation in fact solves the non-determinism
of the ALT composition by a choice between the possible
alternatives and the model can in this way account for it.

Let us also point out that, in general, the obtained
GSPN consists of timed transitions only. Therefore the
simpler SPN model 131 could be used. The choice of
GSPN allows us to use the same kind of timed model
even when considering a variant of the basic model, called
7-model (cf. [2,81), which makes use of unobservable
immediate 7-transitions.

218

3 Program placement analysis

In this section we introduce a net-based notion of
program placement, where by placement we intend the
different possible assignments of the processes of a
program to several available processors, disregarding the
topology of the underlying phisical net of processors.
Within Occam, the placement is determined by the use of
the PLACED PAR composition that allows the
distribution of a program over several processors
assigning each simple or composed process to a particular
processor.

3.1 Extending the net model to capture
placement

According to [l l] , the placement of a program
modelled by a 1-safe F T net can be defined as follows.
Given a 1-safe PT system N=(S,T,W,Mo), a processor
assignment (or configuration) of N is a pair C=(F',f),
where P is a finite set of places, called the processors,
satisfying SflP=0 and ET+P is a function yielding, for
each transition tcT, the place p=f(t)EP corresponding to
the processor which executes the activities represented by
t.

Given a placed Occam program and its
corresponding GSPN model C(T)=(S,T,W,A,Mo), the
placement is represented by a processor assignment
C=(P,f) defined as follows:
- the set P contains a place for each processor named
within a PLACED PAR;
- the function f associates with each process (transition)
contained within any arm of a PLACED PAR the
corresponding processor (place).

The GSPN C,(r)=(S*,T*,W*,A*,Mo*) including the
placement C=(P,f) is defined extending C(r) in the
following way: S*=SuP; T*=T; W*(s,t)=W*(t,s)=l for
each scP, tcT such that f(t)=s; W*(s,t)=W(s,t) and
W*(t,s)=W(t,s) for each scS, tcT; A*=A; Mo*=MoUP.

Let us notice that a placement increases the number of
conflicts in the net to model the competition of processes
for processors. These further conflicts require the use of a
suitable preselection policy assigning equal probabilities
to the probabilistic arcs outgoing from processor places to
represent the equal sharing of a processor among several
processes (unless otherwise specified). Such policy
represents the concurrency reduction due to processor
sharing, and then is the basis for distinguishing among
the various program placements from the performance
evaluation perspective. It is meaningful to consider the set
of possible placements LI=(Ci=(Pi,fi)) of a system C(r)
and compare the augmented systems E&) with respect
to their execution times, since all of them generate the
same set of reachable markings but differ in the degree of

concurrency allowed among their transitions.

3 . 2 Placement comparison by analysis of
the GSPN model

In general several performance indices [3] can be
associated with a GSPN; when applied to our case, they
yield different performance indices of Occam programs.
For instance, the probability of an event can be used to
determine the probability of execution of a program
module, while thefiring frequency of a transition gives
the average number of utilizations of a module; the
average delay in traversing a net allows an estimation of
the average execution time of a program or a module.

Let us consider the Average Delay in Traversing a Net
in steady-state (ADTN for short), for evaluating the time
taken to reach the marking of the exit interface places of
the (GSPN) process-box of a program from the marking
of its entry interface places. We define a probabilistic
average optimality criterion to compare different
placements in the following way: let C be a GSPN, q l l a
natural number (of processors) and CI=(Pl , f l) e
C2=(P2,f2) two placements of C, with IP11=IP2I=q, then
C1 is said to be less time consuming than C2 (C1 <C2)
iff ADTNCcl <AD"&2.

To compare the ADTNs of GSPNs, we must recall
that GSPN are equivalent to continuous-time Markov
Chains (MC) defined over a set of states isomorphic to
the set of tangible markings of the net [3]. The
equilibrium solutions of this MC provide the probability
distributions on the markings of the GSPN leading to the
performance indices related to the net behaviour. During
the analysis of a GSPN we perform a 'closure' of the net
to make its Reachability Graph (RG) strongly connected;
this is in fact a sufficient condition to the existence of the
steady-state of the equivalent MC. Let us summarize the
analysis steps of a GSPN to compute its ADTN:

'closure' of the GSPN by-the introduction of a
fictitious transition t', whose parameter h' is known
(e.g., n'=l), which connects the exit interface places of
the net with the entry ones;
construction of the RG of the net according to the
local preselection policies specified in the model;
construction of the infinitesimal generator matrix,
denoted with Q;
computation of the steady-state solution of the model
by solving the system of linear equations:

l I .Q=O
lhi= 1

where Zi denotes the steady-state probability of
marking Mi and where l l = (n 1 , ..., Zn) is the
equilibrium probability mass function @mf) over the
n reachable markings;
computation of the ADTN=l/Zex-~tI=l/Zex-l, of the
net, where Xex is the probability associated with the

exit interface of the net and 4*=1 is the average
execution time of the activity associated with the
introduced transition t'.

3 . 3 Some application examples

The construction and analysis of the GSPN models of
Occam programs are illustrated by the two following
examples. The first one mainly shows how the use of the
local preselection policy, associated with the possibility
of suitable choosing the probability parameters, allows us
to adapt the model either to the formal semantics of
Occam or to a particular implementation, producing
faithful performance eveluations. The second one applies
the placement comparison method presented in $3.2 and
sketches how the modularity of the net model can be
exploited to jump from simple programs to larger ones
(this point will be reconsidered in the conclusions).

Example 1
Given the Occam program: PAR

ALT
P1
P2

P3

the corresponding GSPN model is given in Fig. 1, where,
e.g., we assign to the timed transitions the following
rates: 'hl=l, h2=3, 313=2, h'=l (t' realizes the 'closure' of
the net).

s l s2

t l

s3 s4

Fig. 1

Through the construction of the reachability graph and
of its corresponding infinitesimal generator matrix Q, we
obtain the steady-state solution and then the ADTN of the
net: ADTN= l/Itex- 1=(48p+57)/90. By assuming p=1/2
(which corresponds to equiprobable altematives, according
to the formal Occam semantics) we obtain ADTN=OQ;
otherwise, according to different implementations of the
language, let p assume different values (e.g. p=l; p=O;
p=2/3) yielding different ADTN (resp.: 1.16; 0,63; 0,98).

Example 2
Given the Occam program: PAR

P1
P2
P3

219

and two processors PR1 and PR2 available, let us
consider the two following placements C1 and C2:

c1: c2:
PLACED PAR PLACED PAR

PROCESSOR PR1 PROCESSOR PR1

P1 PROCESSOR PR2
P2 PAR

PROCESSOR PR2 P2
P3 P3

PAR P1

The two GSPN models, corresponding respectively to
C1 and C2, are given in Fig.2. Processes PI, €9 and P3
are respectively modelled by the transitions t l , t2 and t3
associated with the parameters 111=1, h2=10/9 (i.e. we
assume that P2 is the Occam process studied in Example
1) and h3=3. In both cases the parameter associated with
the closure transition t' is assumed to be 11'=l. The
analysis of the two nets, according to the procedure
presented above, yields respectively the values
ADTN1=2,14 and ADTN2=1,93, i.e. placement C2 is
less time consuming then C 1.

t'

t' t3

Fig.2

4 Concluding remarks and future work

Starting from the 1-safe net model of Occam, we have
developed a GSPN model which supports program
placement analysis, i.e. the identification of the best
placement among the possible placements of the
processes of an Occam program to a given set of
processors. Let us notice that to fully achieve this goal,
the model should be extended to deal with the topological
characteristics of the available net of processors. Future
(and automated) applications could be extended, e.g., to
the optimization of the level of parallelism for an Occam

program, as discussed in [2].
In respect of the applicability of the GSPN model of

Occam programs, in the case of red-life examples the sue
of the (underlying) net model might affect the feasability
of the ADTN computation. As a possibility to face with
this problem we can exploit the modularity and
compositionality features of the basic model. By
exploiting the process-box to define suitable net
morphisms, one can define not only models in which it
exists a bijection among the atomic actions of the
program and the net transitions, but also models in which
a transition represents a program module, i.e., in Occam,
a non-atomic process. The delay to be associated with
such a, let's say, non-atomic transition, is the outcome of
the computation of the ADTN on the net modelling the
corresponding non-atomic process; these partial results
may then be used to obtain a quantitative analysis of the
whole program, as sketched in Example 2 above. The
precise definition ot this technique is straightforward, but
for two aspects we would deserve it a special attention: (i)
the handling of the PRI PAR compositions, which has
been recognized as intrinsecally non-compositional [2];
and (ii) the definition of the morphism when
communication transitions are involved.

We finally notice that, when real-life examples are
considered, both the qualitative analysis of the PT model
and the quantitative analysis of the GSPN one, heavily
relies on the availability of software tools [12] for the
model construction and solution.

Acknowledgements

The authors wish to thank Eike Best, Jon Hall and
Richard Hopkins with whom the PT net model has been
developed, and Marc0 Ajmone Marsan for the fruitful
discussions and his valuable suggestions on the GSPN
model. This research has been carried on within the
ESPRIT BRA project #3148 DEMON (DEsign Methods
based On Nets) [131.

References

[l] 0. Botti, J . Hall, R. Hopkins, A Petri Net
Semantics of Occam2, ESPRIT BRA 3148,
DEMON, Technical Report n.80 (1990).
0. Botti, Un modello in reti di Petri per Occam2,
Tesi di laurea, Dipartimento di Scienze
dell'Informazione, Universith di Milano, (A.A.
1990/9 1) .
M. Ajmone Marsan et al., Generalized Stochastic
Petri Nets: Definition at the Net Level, (submitted
for publication).
S. Bokhari, On the Mapping Problem,in IEEE
Transactions on Computers, Vo1.30, n.3 (1981).
0. Kraemer, H. Muehlenbein, Mapping Straregies
in Message Based Multiprocessor Systems, in P.
Treleaven, C. Nijman, J. De Bakker (eds.), Proc.
of PARLE, LNCS Vo1.258, Springer (1987).

[2]

[3]

[4]

[5]

220

71 I

[a
[7]

INMOS ltd., Occam2 Reference Manual, Prentice
Hall (1988).
E. Best, The Petri Box Calculus for Concurrent
Programs, in E. Best, G. Rozenberg (eds.), '3rd
Workshop on Concurrency and Compositionality',
GMD Studien n.191, (1991).

[SI 0. Botti, F. De Cindio, Some Remarks about a
Petri Net Model of Occam2 using t-transitons,
ESPRIT BRA 3148, DEMON, Technical Report
11.81 (1990).
E. Best, M. Koutny, Partial Order Semantics of
Priority Systems, ESPRIT BRA 3 148, DEMON,
Technical Report 11.82 (1990). Also to appear in
TCS.

[9]

22 I

[lo] M. Ajmone Marsan et al., The Effect of Execution
Policies on the Semantics and Analysis of
Stochastic Petri Nets, in IEEE TSE, Vo1.15, n.7
(1989).

[ll] E. Best, Weighted Basic Modular Nets, in F.H.
Vogt (ed.) 'Concurrency 88', LNCS Vo1.335,
Springer Verlag (1988).

[12] G. Chiola, A Graphical Petri Net Tool for
Performance Analysis, in Proc. of the 3rd Int.
Workshop on Modelling Techniques and
Performance Evaluation,AFCET, Paris, 1987.
E. Best, Design Methods Based on Nets, in G.
Rozenberg (ed.), 'Advances in Petri Nets 89',
LNCS Vo1.424, Springer Verlag (1989).

[13]

