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Abstract 
Stochastic marked graphs (SMG’s) are marked 

graphs in which transmission delays of tokens, and 
firing durations are random variables. A technique is 
presented t o  study the performance of SMG’s. The 
main performance measure i s  the rate of computation, 
i . e . ,  the average number offirings of a vertex, per time 
unit. 

The effect of the topology and the probability of the 
random variables on the rate is investigated. For de- 
terministic random variables, the rate is maximized, 
while for exponential random variables the rate i s  min- 
imized (among a natural class of distributions). 

For random variables with exponential distribution 
several bounds on the rate are provided. The bounds 
depend on the degrees of the vertices and on the aver- 
age number of tokens in a cycle, but not on the num- 
ber of vertices itself. In particular, it is shown that 
the rate i s  at least the optimal (deterministic) rate, 
divided by a logarithmic factor  of the vertex degrees. 
Thus, for some graphs the rate does not diminishes 
below a bound, regardless of the number of vertices. 

1 Introduction 
Diverse graph structure models for concurrent sys- 

tems have been suggested and used. The structures 
differ in generality and scope according to the prop- 
erties one wishes to model and analyze. In this paper 
the simple model of marked graphs (e.g. Commoner 
et. al. [6], Reisig [15] ) is considered. Marked graphs 
are a special case of the more powerful model of Petri 
nets. They consist of a directed graph, with a marking 
which associates tokens to the edges. 

Adding the time factor to marked graphs enables 
performance evaluation of concurrent systems. Time 
of operation can be expressed by a nonnegative real 
number [e:g: [8],, /12/,1 [17] [19] ) or by a random 
variable e g [9] 10 [I13 ). In this paper the sec- 
ond method is used to study stochastic marked graphs 
(SMG’s). 

Two types of events exist in an SMG. The first type 
associates time with the processing performed at ver- 
tices (a vertex plays the role of a transition in a Petri 
net). The second type of events associates time with 
transmission delays of the edges. The results of this 
paper apply to SMG’s with both types of events. For 
the sake of clarity this presentation is for the case of 
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negligible transmission delays. However, it is easy to 
extend the results for the general case. 

The paper is devoted to the performance analy- 
sis of strongly connected1 I directed stochastic marked 
graphs. The main performance measure is the rate of 
computation R(v , i.e., the average number of com- 
putational steps ? firings) of a vertex U ,  per time unit. 
A technique is presented to analyze and to compare 
the performance of different stochastic marked graphs. 
The technique clarifies the difference between process- 
ing times and transmission delays. This paper is a gen- 
eralization of Rajsbaum and Sidi’s paper [18] on the 
performance of synchronizers Awerbuch [l] - methods 
to adapt a synchronous distributed algorithm to run 
on an asynchronous network. 

Section 2 contains the model, and the technique (a 
certain type of recurrence relations) used to analyze a 
SMG. 

In Section 3 the case of random variables with gen- 
eral probability distributions is studied. First the ef- 
fect of the topology on the rate is analyzed. Stochastic 
comparison techniques (e.g. [20] ) are used to compare 
the rate of stochastic marked graphs with different 
topologies. Then systems with the same topology but 
different distributions of the random variables are an- 
alyzed. It is shown, using a partial order on the set of 
distributions, that determinism maximizes the rate of 
computation. On the other hand, exponentially dis- 
tributed random variables minimize the rate, amon a 
large class of distributions. Similar studies for acy&c 
networks and fork-join queues have been performed by 
several authors, e.g. Baccelli et. al. [3], and Pekergin 
et. al. [13]. 

The case of identical, exponential random variables 
is considered in Section 4. Several bounds on the rate 
are provided that depend on the degrees of the vertices 
and on the average number of tokens per edge in a 
cycle, but do not depend on the number of vertices 
itself. For example, for the case’of regular 6 degree 
graphs (either in-degree or out-degree), such that the 
average number of tokens on every cycle is Q, R(v) = 

The main result is that, for the case of bounded 
is the minimum 

Q(*)a2 

degree graphs, R ( v )  = @(e), where 

‘a directed graph is strongly connected if there is a path in 
the graph between every pair of vertices. 

2A function j ( n )  = Q(g(n)) if there exist constants c1, c2 > 
0 ,  and no, such that for every n 2 no, clg(n) 5 j ( n )  5 c2g(n). 
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average number of tokens in a cycle. 
The rate of a deterministic marked graph, i.e., one 

in which duration of events is a real number, is equal 
to ii (e.g. 141, [17]). Since it is shown here that this is 

random event durations reduce the rate by at most 
a factor of l l l o g h ,  where A is the maximum vertex 
degree. 

The model of Rajsbaum and Sidi [18] is essentially 
that of a stochastic marked graph with one token per 
edge. In Berman and Simon [4], and Bertsekas and 
Tsitsiklis [5 , a model similar to the one in I181 is con- 

butions are obtained. The class of stochastic marked 
graphs with exponentially distributed random vari- 
ables belongs to  the more general case of stochastic 
petri nets (see Marsan [9] for a survey), where it is 
often assumed that the state space is given, which in 
our case is of exponential size in the number of ver- 
tices. Asymptotic performance of stochastic marked 
graphs as the number of tokens grows but the graph 
remains fixed) is studied by Molloy Ill!. 

2 TheModel 
Stochastic Marked Graphs 

the case o I maximum rate, Corollary 4.5 implies that 

sidered, an d some of the results for exponential distri- 

A marked graph MG = (G,so , consists of a finite, 

and an initial marking, so. A marking s is a function 
from E to  the non-negative integers JV representing a 
state of the marked graph, where s ( e )  is the number 
of tokens  on edge e .  A vertex v is enabled if s ( e )  > 0 
for every edge e = U -+ v going into U. An enabled 
vertex v fires by consuming one token from each in- 
comming edge and adding one token to each outgo- 
ing edge. Thus, when a vertex v fires the marking 
changes to another marking s', such that for every 
edge e = 2 -, y, 

directed and strongly connecte 2 graph G = (V,  E ) ,  

( s ( e )  if 2 = y = U, else 
- 1 if y = U, else 

s e  + 1  i f t = v , a n d  s' (e)  = { 
1 s (e j  otherwise. 

The operation of firing is atomic in that the tokens 
are removed simultaneously from the corresponding 
edges, and then are added simultaneously to the cor- 
responding edges. But in a marked graph, it is not 
specified when the vertices fire, nor any other timing 
information. 

In a stochastic marked graph there are two type 
of events that have durations: delays and processing 
times. Informaly, the delay is the time it takes a token 
to travel along an edge, and the processing time is 
the time it takes a vertex to fire (from the instant it 
removes tokens to the instant it adds tokens). In an 
SMG, a vertex fires as soon as it is enabled, provided it 
is has completed the previous firing. We say that v is 
fireable if v is enabled and has completed the previous 
firing. Observe that tokens may arrive on an edge 
U + v before v is ready to fire and consumme them, 
either because on another edge entering v there are no 
tokens, or because v is busy firing. Therefore edges 

are assumed to have storage buffers. The following 
simple proposition is well known. 

Proposition 2.1 The number of tokens in a cycle 
does not change by vertex firing. 

It  follows from this proposition that the buffers 
needed are of bounded size (at most IVl). Note that 
for a marking s ,  s ( e )  represents the total number of 
tokens on edge e :  the tokens traveling along e plus the 
tokens stored in the buffer of e .  

Assume that at time 0, the number of tokens in 
the buffers is given by S O .  Let us denote by t k ( v ) ,  
k 2 0, the time on which v fires for the IC + 1-th time, 
and by ~ ( v )  the corresponding processing time. Let 
us denote by Mk the tokens that .are sent on time 
t k ( v ) ,  and by bk(e) the delay of Mk on e .  The pro- 
cessing times ~ ( v )  and the delays & ( e ) ,  are positive, 
real-valued random variables defined over some prob- 
ability space. Formally, a stochastic marked graph, 
SMG = ( M G , r , 6 ) ,  consists of a marked graph MG, 
together with the sequences of random variables rk(v)  
and &(e) ,  k 2 0, v E V ,  e E E. 

We say that SMG is deadlock-free if for every v E 
V ,  the times t k ( v ) ,  k 2 0, are finite. We shall assume 
that S M G  is deadlock-free. Another well known result 
is the following. 

Proposition 2.2 SMG is  deadlock-free if and only if 
eve y cycle C has a positive number of tokens, so(C) > 
0. 

Let us assume, for ease of notation, that there is a 
loop v -+ v on every vertex U, with one token, SO(V -+ 

U) = 1, and &(U -+ U) = 0, IC 2 0. Also, for k < 0, let 
6k(e)  = 0, and t k ( v )  = 0, and for e E ,  let &(e)  = 
-CO. The behavior of SMG will not be affected by 
these assumptions. 

Consider an edge e = w --+ v E V .  Observe that v 
consumes the first token sent by w, only after having 
consumed all the i = so(e)  tokens initially in e .  To 
fire for the i + 1-th time, v has to wait for w to fire 
for the first time, and for the token to arrive to U. 
Thus, t j + l ( v )  2 t o ( w )  + bo(e).  In general, the token 
v consumes on e at time t k ( v )  is the one produced by 
w at time tk-30(e) .  It follows that the evolution of the 
system can be described by the following recursions: 

for k 2 0, v E V. Note that the assumption that 
there is a loop on every vertex ensures that v does 
not start firing for the k-th time before completing 
the previous firing. To simplify the presentation, we 
make the inessential assumption that the delays are 
negligible; it  is not difficult to extend the results of 
this paper to the case of non-negligible delays. The 
recursions 1 become: 

for k 2 0 ,  v E V .  
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It is interesting to note that the firing times t k (u )  
have a simple graph theoretic interpretation. For a 
vertex v, let &(U) be the set of all maximal, directed 
paths of k tokens ending in v3. Note that, since S M G  
is deadlock-free, by Proposition 2.2, every maximal 
directed path is of finite length. For instance, for k = 
0, if every edge entering v has a positive number of 
tokens in the initial marking, then So(v) includes only 
U itself. And, Sk(v) is not empty, since there is always 
a path of length k which uses only the loop v + U. 

For a path P E &(U), P = vo + v1 + ... + V I  (= 
U), define an initial part of P as Pi = vo + v1 + 
. . . -+ vi ,  i 5 I ,  and let so(Pj) be equal to the number 
of tokens in Pi. Now we define the random variable 
T ( P ) :  

I 

i = O  

and the set of random variables T(Sk(v ) = {T(P) : 

variables, the first a ~ o ( v 0 )  and the last a T ~ ( v ) .  Note 
that the random variables in T Sk(v)) are in general 
not independent, even if the T ~ [ v ) ’ s  are independent. 
The graph theoretic interpretation of the firing times 
is given by the next theorem. 

P E Sk(v)}. Thus, T(P) is the sum of I + 1 random 

Theorem 2.3 For every v E V ,  k 2 0, t k ( v )  = 
max{T(F) : P E Sk(v)}. 

Proof: Define an order < ,on  the vertices of G as 
follows. If there is a token free path from U to U ,  then 
U < U. This defines a partial order on V ,  since the 
token free subgraph of M G  is acyclic. Complete the 
partial order to  a total order in an arbitrary way. 

Let vo be the smallest element with respect to <. 
One can check that to(v0) = q,(v0). 

Assume the theorem holds for every vertex up to 
k - 1, and for vertices smaller than v, up to k .  Then, 
by the recursions 2, 

By induction hypothesis, 

and leaving only one max, 

t k ( v )  = max T(Sk(v)). 

A path P has k tokens if the s u m  of so (e) over all edges e in 
P is equal to k. The path is also maximal, if there is no longer 
path ending in ‘U, containing P and with the same number of 
tokens. The length of a path is the number of edges in the path. 

The Performance Measures 
The most important performance measures investi- 

gated in this paper are the firing times t k ( v ) ,  k 2 0, 
v E V .  A related performance measure of interest is 
the counting process Nt(v), associated with U, defined 
by 

Nt(v) = sup{k : t k ( v )  5 t } .  
That is, Nt(v) is the number of firings (minus 1) com- 
pleted by v up to time t. Similarly, Nt = CUE” Nt(v) 
denotes the total number of firings (minus IV() per- 
formed in the system up to  time t .  The following 
proposition is about synchronic distances. I t  indicates 
that no vertex can advance, in terms of firing times, 
too far ahead of any other vertex. Let i be equal to the 
maximum number of tokens in an edge in the initial 
marking, and let d be the diameter4 of G .  

Proposition 2.4 For all u,v  E V ,  and t >_ 0, 
INt(u) - Nt(v)l 5 d i .  

Proof: Denote by 1 the length of a simple path from 
U to v. A simple inductive argument on 1, using the 
recursions 2 shows that if the last message sent by U 
up to time t is Mk, k = Nt(u), then that Nt(v) 5 
k + l i .  Thus, Nt(v) - Nt U) 5 l i  5 di. The same 

Another important performance measure is the 
computation rate of v, R ( v ) ,  of a vertex v in G, defined 

argument for a simple pat 6 from v to U proves that 

R(v)  = lim - Nt (U) 

Nt(U) - N*(v) 5 di. 

by 

t+oo t ’ 
whenever the limit exists. Note that if the limit exists, 
then R(v) is a number, not a random variable. Sim- 
ilarly, the computation rate of the network is defined 

R =  lim -. 
Proposition 2.4 implies that for every U, v E V ,  R(u)  = 
R ( v ) ,  and therefore, R = IVlR(v). 

3 General Probability Distributions 
In this section results about networks with general 

distributions of the processing times T ~ ( v )  are pre- 
sented. 
3.1 Topology 

It is shown here that adding edges to an SMG with 
an arbitrary topology slows down the operation of each 
of the processors, regardless of the number of tokens 
in the edges added. The basic methodology used is the 
sample path comparision; that is, comparing the evo- 
lution of message transmissions in different SMG’s for 
every instance, or realization, of the random variables 
n ( v ) .  This yields a stochastic ordering (e.g. [16], [20] 
) between various SMG’s. 

by 
Nt 

t-cw t 

‘The diameter is the maximum distance between a pair of 
vertices in the graph. 
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Theorem 3.1 Let SMG' be the stochastic marked 
graph obtained f rom S M G  by adding to  it a set of 
edges E' with an arbitrary number of tokens. For ev- 
ery realization of the random variables rk(v), k 2 0, 
v E V ,  the following inequalities hold 

for all k 2 0, v E V ,  where t)k(v) are the firing times 
in SMG'.  

Proof: The proof follows from theorem 2.3, since 
Sk(v )  is contained in Si (v) ,  the set of maximal paths 
ending in v ,  in SMG'.  

Theorem 3.1 implies immediately the following the- 
orem, where primed quantities are with respect to 
SMG'.  

Corollary 3.2 Under the conditions of Theorem 3.1, 
we have that Nt (v)  >_ N:(v) and R(v) 2 R'(v) for all 
v E V .  Also Nt > N: and R 2 R'. (When the limits 
exist). 

Notice that no assumption was made about the ran- 
dom variables rk(v).  In particular, they need not be 
independent. 

The sample path proof above implies that the ran- 
dom variable Nt is stochastically larger than the ran- 
dom variable N:, denoted Nt N ; ,  namely, Pr{Nt > 
a} 2 Pr{N: 2 a}, for all a. The corollary implies that 
if one starts with a simple directed cycle (a strongly 
connected graph with the least number of edges) and 
successively adds edges, a complete graph is obtained, 
without ever increasing the rate. 
3.2 Probability Distributions 

Now we compare networks S M G  and SMG' having 
the same topology (V, E), but operate with different 
distributions of the processing times ~ k ( v ) ,  .;(U). To 
that end, we assume that in both networks the pro- 
cessing times q ( v ) ,  k > 0, v E V are independent and 
have finite mean E[rk(v)]  = X,l(v). In the case that 
A ~ ( v )  = X(v), we say that X(v) is the potential rate of 
U ,  as this would be the rate of v if it would not have 
to wait for tokens from its neighbors. The processing 
times in SMG' are distributed as in SMG, except for 
some of them, which may have another distribution. 

Recall that a function h is convex if for all 0 < t < 1, 
21, 22, it  holds h ( t q  + (1 - t ) i ? )  < . t h ( z l )  .+ (1 - 
t ) h ( z 2 ) .  A random variable X with distribution FX 
is said to  be more variable than a random variable Y 
with distribution F y ,  denoted X Y, or Fx>,Fy, if 
E[h(X)]  2 E[h(Y)] for all increasing convex functions 
h. The artial order 2, is called convex order e.g. 
[16], [20]7. Intuitively, X is more variable than !t' if 
Fx gives more weight to  the extreme values than Fy;  
for instance, if E[X] = E[Y], then Var(X) 2 Var(Y), 
since h ( z )  = x2 is an increasing convex function. 

Assume that S M G  and SMG' have the same ar- 
bitrary topology, but some of the processing times 
in S M G  are more variable than the corresponding 
processing times in SMG', namely, for some v's, 

~ k ( v ) > , ~ i ( v ) ,  while all other processin times have the 
same distributions in both graphs. Wfen all process- 
ing times in S M G  S M G ' )  are independent of each 
other, the following 6 olds. 

Theorem 3.3 Under the above conditions the follow- 
ing holds for all processors v and k > 0 

Proof: From Theorem 2.3 we have that t k ( v )  = 
max{T(P) : P E sk U)}, where P = 00 --+ v1 -+ e - .  + 

VI (= v is a maxima \ directed path of k tokens ending 

itive and max and C are convex increasing functions, 
it follows that t k ( v )  is a convex increasing function 
of its ar uments q ( u ) .  Thus, we can use Proposition 
8.5.4 in f161: 

in v. d om the fact that the processing times are pos- 

Proposition 3.4 (Ross) If  XI , X z ,  . . . , Xn are in- 
dependent random variables, Y1, Y2,. . . , Yn, are in- 
dependent random variables, and Xi>cx:. ,  i = 1, 
2 , .  . . ,n, then g(X1 ,X2, . . .  , &)>, gFi?Y2,. . . ,Yn) 
for  all increasing convex functions g which are con- 
uex in each of its arguments. 

The proof of the theorem now follows since by as- 
sumption the processing times in S M G  are indepen- 
dent, the processing times in SMG' are independent, 
and T;(v)<,Q(v).  Note that the random variables 
T(P) are not independent. 

Corollary 3.5 Under the above conditions, Nt (v)  5, 
N:(v), Nt 5, N:, R(v) 5 R'(v), and R 5 R'. 

Assume that the expected time until a processor 
finishes a processing step given that it has already 
been working on that step fop a time units is less 
or equal to the original expected processing time for 
that step. Namely, we assume that the distributions 
of the processing times are new better than used in 
expectation (NBUE) (e.g. r 6 ]  , [20]), so that if T is a 
processing time, then for a 1 a 2 0 

E[' - U(T > a] 5 E[T]. 

Consider three stochastic marked graphs with the 
same topology S M G ,  S M G ( d )  and SMG(") .  The 
processing times of S M G  are independent with any 
NBUE distribution. The processing times of S M G ( e )  
have the same mean as in S M G ,  but are indepen- 
dent, exponentially distributed. The processing times 
of S M G ( d )  have the same mean as in S M G ,  but are 
deterministic'. The next theorem follows from The- 
orem 3.3, and from the fact that the deterministic is 
the minimum, while the exponential is the maximum 
among all NBUE distributions with respect to the con- 
vex ordering [16], [20] . 
Theorem 3.6 For every vertex U, and k 2 0, 
t y ( v ) g k ( v ) _ < c t " ( v ) .  

'A random variable is deterministic if it is always equal to 
some constant. 
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Some examples of distributions which are less vari- 
able than the exponential (with appropriate parame- 
ters) are the Gamma, Weibull, Uniform and truncated 
(in zero) Normal. 

With respect to comparing the rate of a SMG with 
the rate of a SMG with deterministic processing times, 
we can prove a stronger result. Namely, the probabil- 
ity distributions of the processing times of SMG need 
not be NBUE; they can be of an arbitrary distribu- 
tion, as long as they are independent and have finite 
mean. The proof of the next theorem is by induction 
on k, using Jensen’s inequality. 

Theorem 3.7 Under the above conditions, t y ) ( v )  5 
F[tk(v) ] ,  for all vertices v, and k 1 0. The ezpectation 
is  taken over the respective distributions of processing 
t imes in S M G .  

When all processing times are deterministic, the 
computation of the rate is no longer a stochastic prob- 
lem, but a combinatorial one. Thus, one conclusion 
of the last theorem is that in this case, the rate of 
SMG(d)  , obtained via combinatorial techniques ([7] 
,[14], [17], [19J ), yields an upper bound on the aver- 
age rate of SMG. Furthermore, if the times t y ) ( v )  are 
computed, they give a lower bound on E[tk(v)]. In the 
next section we concentrate on the other extreme case: 
exponentially distributed processing times. Therefore, 
the results will provide lower bounds on the rate of an 
SMG with arbitrary NBUE processing times. 

4 Exponential Distributions 
In this section we assume that the processing times 

T ~ ( v ) ,  v E VI k 2 0, are independent and identically 
distributed exponential random variables with mean 
A - ’ .  In this case, the SMG is a markov chain. A 
state of the markov chain at time t is a marking of 
the marked graph, and it is specified by the number of 
tokens stored in the buffer of each edge. Thus, a vertex 
with a positive number of tokens on each of its in- 
comming edges in a state of the chain, is enabled and 
in a processing time. The number of states is finite, 
by Proposition 2.1. Moreover, the markov chain is 
irreducible, because the network is strongly connected 
(see Commoner et. al. [6] ). Therefore, the limiting 
probabilities exist, they are all positive and their sum 
is equal to 1. Now, using the limiting probabilities, 
the percent of time that a vertex v is enabled, P ( v ) ,  
is computed by summing the probabilities of all states 
in which the vertex is enabled. It follows that the rate 
R(v) = AP(v)  exists and is positive [lo]. However, 
the problem in using the markov chain to compute the 
rate is that the number of states is exponential. For 
example, the number of states of a complete graph 
with one token on each edge in so is 21‘1 - 1 [lS]. 

We consider general topologies and derive upper 
and lower bounds on the rate of computation. These 
bounds depend on the degrees of the vertices and on 
the average number of tokens per edge in a cycle. But 
the bounds do not depend on the number of vertices 
itself. For bounded degree (either in-degree or out- 
degree) graphs, the bounds are tight (up to a small 

constant), and provide a characterization of which 
SMG’s have a bounded rate independent of their num- 
ber of vertices. 

number of edges go- 
of edges plus 

For a directed cycle C of length I and so(C) to- 
kens, let A(C) = so(C) 1. Let A = max{A(C) : 
Cis a cycle}, a = min(A(C) : Cis  a cycle} and 
f = max{sor)e ;&kea simple path}. Recall that 
s = max{so(e 

The following decomposition procedure is used in 
the sequel. Let P = vo + v1 -+ . . . + v, be a path of 
G. If P is simple, nothing is done. Otherwise, remove 
a simple cycle from P as follows. Let j 5 n be the least 
index such that vj = vi, i < j. Clearly, C1 = vi + 

V i + l  -+ . . + vj is a simple cycle. Remove from P all 
the edges of Cl to obtain a shorter path. Repeat this 
procedure until the path is sim le, obtaining simple 
cycles C,, . . . , Ck, and a simple gossibly empty) path 
P’. Observe that using the decomposition of P we get 
that so(P) 5 f + nA. 

Theorem 4.1 (Lower Bound) 

(i) For every k 2 0 there ezists a vertez v for which 

(ii) For every k 2 0 and every vertex v ,  

Proof: We present a detailed proof of part (i); the 
proof of part (ii) is discussed at the end. Define a 
random walk vo -+ v1 + v2 s . 0  on G as follows. 
Let vo be any enabled vertex in the initial marking. 
Let v1 be a vertex such that vo + v1 E E ,  and 

In general, assume that the random walk has been 
defined up to v i ,  i 2 0, and call it Pi. Let so(Pi) = 
f i  = f , i.e., f is the number of tokens (in so) in the 
random walk defined so far. Then vi+l is a vertex 
such that vi -, vi+l, (recall that we assume that every 
vertex has a loop) and 

Tj+a,(u,+u,+l)(Vi+l) = ~ f + s o ( u , + u ) ( v ) .  

Hence, f i + l  = so(Pi+l) = fi + so(vi -+ vi+l) .  Since 
vi+l will not start the fi+,-th firing before vi finishes 
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the fi-th firing, it f~llows that t f ,+ l (~ i+ l )  - tf,(vi) 2 
7f,+l(vi+l). The quantity ~ f , + ~ ( v i + l )  is equal to the 
maximum of at  least bout independent and identically 
distributed random variables with mean A - l .  It is 
well known that the mean of c such random variables 
is equal to l / i  M A - l  logc6. It follows that 

~ [ t j . + l  (vi+l)I - ~ [ t j ,  (vi)] 2 A-' log bout, 

and thus 

E[t~,+~(vi+l)]  2 E [ ~ o ( ~ o ) ]  + A-'(i + l)log6out, 

where E[to(vo)] = A-'. Using the decomposition pro- 
cedure, one can see that the random walk Pi consists 
of an initial simple path possibly empty), followed by 

simple path is at  most f, and thus the number of to- 
kens in Pi satisfies fi < iA + i. Now, observe that 
fi+l 5 fj + i, for i 2 0. Hence, for f j  < k 5 f j + l ,  we 
get 

a sequence of cycles. T 6 e number of tokens in the 

E[tk(vi)] > E[tji(vi)]  
2 A-' + X-liIog6,,t. 

Since fi 5 iA + f, then 

and since k - i < fi, 

This completes the proof of part (i). The proof of 
part 11) evolves along similar lines, except that we 
start rom vi and move backward along the path. 

The inequalities of the previous theorem can some- 
times be improved for the case in which A is large 
enough, by considering a cycle C for which A(C) = Q, 
and a walk which goes around C; namely, E[tk(v)] 2 
A-'k/ii. Therefore we have the following. 
Corollary 4.2 

The following proposition (similar to pp. 672 in 
Bertsekas and Tsitsiklis [5] ), is used in the proofs of 
the upper bounds on the firing times. 

Proposition 4.3 Let {Xi} be a sequence of indepen- 
dent exponential random variables with mean A-'. 
For every positive integer k and any c > 4 log 2, 

sNatural logarithm. 

Theorem 4.4 (Upper Bound) 
(i) For every k > 0 ,  for every vertex U, 

4 k 
E[tk-l(v)] < ~ ( 1 +  IVl logain + z IogAin). 

(ii) For every k > 0 and every vertex v ,  

Jvk-l(V)l 5 loglVI+ 

Proof: Again we restrict to the proof of part (i). 
Recall that Theorem 2.3 states that for every v E V ,  
k > 0 ,  tk-~(v)  = max{T(P) : P E &-1(v)}. Also, for 
a path P E Sk-l(v), T ( P )  is equal to the sum of 1, 
1 = length(P), independent and identically distributed 
random variables. By Proposition 4.3, 

for every c > 4, since log 2/ log Ai, 5 1. Using the de- 
composition procedure, we have that l is equal to the 
length of a simple path plus the length of some simple 
cycles. By the definition of 6, and since a simple path 
haslengthat most IVl-1, then1 5 k / 6 + l V l - l =  K. 
Now, there are at  most A$ paths of length K ending 
in v. It follows that 

- - e - K ( f - l ) l o g A r n  
9 

for every c > 4. 
5 log Ai,dc. Hence, 

E[tL-l(v)] < 1 dt 

Letting t = F l o g h i , ,  dt = 

logA,,  

= -lOgAi, 4K + -. 4 
A A 

Namely, 

Corollary 4.5 

A a  
R(v) ' 4 log min(Aout, Ai,) ' 

Consider the meaning of the previous results. For 
regular in- or out-degree 6 graphs, for which ii = A, 
the bounds are tight up to a constant factor of 1/4: 
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Corollary 4.6 For regular in-degree or out-degree 6 
graphs, f o r  which a = A ,  

The case of bounded degree raphs is of particular 
interest, because it is practicaby unfeasible to con- 
struct networks with vertex de rees that grow as IVl 
grows. In this case, R(v)  = Q&i), by Corollary 4.5. 
Also, R ( v )  = O(Xii), by Corollary 4.2. Therefore, even 
if A > a,  for bounded degree graphs the bounds are 
asymptotically tight (up to a constant factor of 1/4 of 
the logarithm of the bound on the degrees): 

Corollary 4.7 (Main Result) For bounded degree 

Acknowledgment 
The author would like to thank two anonymous ref- 

erees for their valuable comments. 

References 
B. Awerbuch, “Complexity of Network Synchro- 
nization.” Journal of the ACM,  Vol. 32, No. 4, 
pp. 804-823, Oct. 1635. 

O.J. Boxma, “Sojourn Times in Cyclic Queues- 
The Influence of the Slowest Server,” in Com- 
puter Performance and Reliability, G. Iazeolla, 
P.J. Courtois, O.J. Boxma (Ed.), Elsevier Science 
Publ. (North-Holland), 1988. 

F. Baccelli, W.A. Massey, A. Towsley, “Acyclic 
Fork-Join Queueing Networks,” Journal of the 
AGM,  vol. 36, no. 3, July 1989, pp. 615-642. 

P. Berman, J .  Simon, “Investigations of Fault- 
Tolerant Networks of Computers,” Proc. of the 
20th ACM Symposium on the Theory of Compu- 
tation (STOC), 1988. 

D.P. Bertsekas and J.N. Tsitsiklis, Parallel and 
D i s t r i h t e d  Computation, Prentice-Hall, U.S.A., 
N.J. 1989. 

F. Commoner, A.W. Holt, S. Even, A. Pnueli, 
“Marked Directed Graphs,” Journal of Computer 
and Systems Sciences, vol. 5, 1971, pp. 511-523. 

S. Even and S. Rajsbaum, “The Use of a Synchro- 
nizer Yields Maximum Rate in Distributed Net- 
works,” Proc. of the 22nd ACM Symposium on 
the Theory of Computation (STOC) (May 1990), 

J .  Magott, “Performance evaluation of concur- 
rent systems using Petri nets,” Inform. Process- 
ing Letters, vol. 18, pp. 7-13, Jan. 1984. 

M.A. Marsan, “Stochastic Petri Nets: an ele- 
mentary introduction,’’ in Advances in Petri Nets 
1989, (Lecture Notes in Computer Science , vol. 
424), Springer, 1989, pp. 1-29. 

pp. 95-105. 

M .K.  Molloy, “Performance analysis using 
stochastic petri nets,” IEEE Tbans. on Comput- 
ers, vol. c-31, no. 9, September 1982, pp. 913- 
917. 

M.K. Molloy, “Fast bounds for stochastic petri 
nets,” International Workshop on Timed Petri 
Nets, Torino, Italy, July 1985, pp. 244-249. 

T .  Murata, “Synthesis of decision-free concur- 
rent systems for prescribed resources and perfor- 
mance,” IEEE %ns. Software Eng., vol. SE-6, 
no. 6, pp. 525-530, 1980. 

N. Pekergin and J-M. Vincent, “Stochastic 
Bounds on Execution Times of Task Graphs,” Re- 
port EHEI, 1989. 

S. Rajsbaum, “Analysis of Distributed Protocols 
based on Recurrence Relations,” to appear in 
5th International Workshop on Distributed Al- 
gorithms, Greece, October 1991. 

W. Reisig, Petri Nets, Springer-Verlag, Berlin 
Heidelberg, 1985. 

S.M. Ross, “Stochastic Processes”, J .  Wiley, 
1983. 

C.V. Ramamoorthy and G.S. Ho, “Performance 
evaluation of asynchronous concurrent systems 
using Petri nets,” IEEE Tbans. Software Eng., 
vol. SE-6, no. 5, pp. 440-449, 1980. 

S. Rajsbaum and M. Sidi, “On the Performance of 
Synchronized Programs in Distributed Networks 
with Random Processing Times and Transmis- 
sion Delays,” 4th International Workshop on Dis- 
tributed Algorithms, Bari, Italy, September 1990 
(Lecture Notes in Computer Science, Springer). 
Also in Department of Electrical Eng., Technion, 
EE PUB No. 770 (November 1990). 

[19] J .  Sifakis, ‘‘Performance evaluation of systems us- 
ing nets,” in Net Theory and Applications (Lec- 
ture Notes in Computer Science, Vol. 84), W. 
Brauer, Ed. Berlin, Germany: Springer, 1980, pp. 

[20] D. Stoyan, “Comparison Methods for Queues and 
Other Stochastic Models,” English Translation 
(D.J. Daley, Ed.), J .  Wiley & Sons, New York, 
1984. 

307-319. 

101 


