Simulation of Timed Petri Nets by Ordinary Petri Nets and
Applications to Decidability of the Timed Reachability Problem
and other related problems

V. Valero Ruiz

Dpto.Informatica

Esc. Politécnica
Univ. Castilla-La Mancha
Albacete, SPAIN 02071

Abstract

In this paper we consider Timed Petri Nets, for
which a timed step semantics generalizing the ordinary
step semantics is presented. A codification of them,
with regard to such semantics, by Ordinary Petri Nets
1s presenied. This codification is presented in a gradual
way, beginning with that corresponding to a more re-
stricted and thus simpler step semantics. This seman-
tics does not allow the overlapped firing of several in-
stances of each transition. Next, we consider a step sc-
mantics which allows such overlapped executions, but
not the simultaneous firing of several instances of the
same transition. In both resiricted cases the construc-
tion is based on an automaton whick controls the sys-
tem evolution. The construction for the most general
semantics is rather more complicaled, that is why it is
presented gradually. We consider three versions of i,
being the two first ones easier to understand, but hav-
ing each one a different problem that we would probably
like to avoid; this is made by the third construction,
which refines the previous ones. Finally, we use this
simulation to decide several problems on Timed Petri
Nets.

1 Introduction

In this paper we introduce a class of Timed Petri
Nets that are obtained from (Ordinary) Petri Nets by
associating a duration to the execution of each tran-
sition of the net. We present a codification of them
by means of Ordinary Petri Nets. This allows us to
simulate their timed step sequence semantics by the
ordinary occurrence sequence semantics of the corre-
sponding translation. This simulation allows us to
translate to Ordinary Petri Nets the timed versions
of a collection of properties on Petri Nets, like Reach-
ability, Liveness or Deadlock Freeness. Thus we can
conclude their decidability, since they are decidable
for Ordinary Petri Nets (see [4,5,6]). We have found in
the literature two versions of timed extensions of Petri
Nets. The first one, Time Petri Nets (see [7]), asso-
ciates two integer numbers to each transition. These
numbers represent, respectively, the moment at which
the transition can be fired and the moment at which
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must fire at the latest (both with regard to the in-
stant at which the transition is enabled). In Time
Petri Nets the firing of transitions takes no time. The
second version, Timed Petri Nets (see [9]) is the one
that we study in this paper. It is based on the asso-
ciation of an integer number to each transition, which
indicates its duration. The only scheme of codifica-
tion of Timed Petri Nets by Non-Timed Petri Nets of
which we have knowledge is that presented in [1]. It is
done by modelling the passage of time by means of a
clock controlling the net behaviour, represented by a
transition generating ticks periodically. However, this
scheme complicates the modelling of synchronizations.
Furthermore, to model the coincidences of events at
the same instant it is necessary to include some places
with capacity 0, with the aim of maintaining the syn-
tactic definition of Petri Nets. This means a violation
of the net semantics rules, and thus we consider that
such scheme of codification is not adequate, since it
is not done in the strict ordinary net framework. On
the other hand, that construction does not allow over-
lapped executions of the same transition, which would
be natural to allow when generalizing the firing rule
to Timed Petri Nets, in an straightforward way; since
before an execution of a transition will finish we could
be able to fire it again. It is even possible that taking
the Step Semantics as a starting point, we would like
to allow the simultaneous firing of several instances of
the same transition at the same instant, as far as it
would be allowed by the firing rule.

The construction that we present is based on the
representation of the passage of time not by a ‘spe-
cial’ transition, but by an ‘absolutely standard’ place.
Thus we obtain a strict codification just using ordinary
nets, which allows to use the full Petri Nets theory
to study Timed Petri Nets. Besides we take a timed
step semantics as semantics of the Timed Petri Nets.
This one will be simulated by the standard semantics
of the corresponding Petri Net. In this way, we let
both the overlapping and the simultaneous firing of
either the same or several transitions, as far as the fir-
ing rule allow. We also consider two more restrictive
semantics, avoiding either the simultaneous firing of




several instances of the same transition, or even over-
lapped executions of such instances. The main reason
for considering these semantics is that the codification
is much simpler than in the general case. These codi-
fications, which are presented in sections 4.1 and 4.2,
can be done by means of an automaton controlling
the system evolution. These automata can be imme-
E]i]ately codified in terms of Ordinary Petri Nets (see
8]).

)I‘he general construction covering the step seman-
tics without restrictions, is presented in section 4.3.
We consider three different constructions to realize the
codification because the two first ones are simpler, and
easier to understand. Nevertheless each construction
has a problem that we would possibly like to avoid.
The first solution has the problem that the simulation
allows empty steps, and the second construction does
not preserve liveness in general. Finally, the third con-
struction has not any of these problems.

The paper is structured as follows: in section 2 we
define Timed Petri Nets and their semantics; in section
3 we introduce several problems on Timed Petri Nets
that can be solved using our simulation, by reducing
them to related solved problems on Ordinary Nets.
Finally, as described before, in section 4 we present
the different constructions defining the codifications
for each case.

2 Timed Petri Nets

Definition 1 (Timed Petri Net)
Let ¥ be an infinite alphabet. We define a Timed
Petri Net (TPN) as a tuple (P, T, F, W,§), where:

P . Finite set of places

T : Finite set of transitions (disjoint with P)
FCPxTUT x P (Set of arcs)

W : F — INT (Weight of the arcs)

6 : T — IN* (Durations)

The effect of the firing of timed transitions is for-
malized as follows: when a transition is fired, we will
remove the corresponding tokens from its precondi-
tions, and only when the transition ends (after the
corresponding duration time has passed) we add the
corresponding tokens to the postconditions. This im-
plies the necessity of adding to the ordinary markings
a second component which indicates what transitions
are in execution, and for each one of them how much
time is left till its termination.

Definition 2 (Markings of Timed Petri Nets)
Let N = (P, T, F,W,6) be a TPN. A marking M for

N is a pair (M1, M3), where M; € INT and M, is a

finite multiset of pairs in T x IN* such that ¥Vt € T
and Yy > 6(t) : Ma(t,y)=0. 0O

We will call M, the current marking (here marking
has the ordinary meaning), and we say that M, is the
multisel of pending transitions. We have considered
multisets of pending transitions instead of just sets,
in order to allow the overlapped firing of any kind
of transitions. Thus we have the maximal generality,
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and we are free to introduce restrictions when defining
the firing rule, if we desire to introduce any kind of
limitation.

Contrary to what happens in ordinary nets, at a
concrete instant a Timed Petri Net may have a deter-
mined current marking, and in the next instant this
marking will change, even though no new transition
has been fired, by effect of the termination of some
transition (or several) which were in execution.

On the other hand, if no new transition is fired from
a certain instant on, the marking of the net will only
suffer variations for a finite time, stabilizing itself at
certain instant. These stable markings are those such
that M, = 0. Naturally, initial markings should be
stable. Thus, we say that a marking M = (M, M3)
can be initial iff My = 0.

Definition 3 (Firing Rule)

Let N = (P, T, F,W,6) be a TPN and M = (M;, M)
the marking of it at some instant 8 € IN. We say that
a multiset of transitions R is enabled at the instant 3

iff
Mi(p) > ) R(t)-W(p,t), Vp€ P
teT

If any multiset of transitions R is enabled at an instant
8 € IN, and we fire them at that instant, the reached
marking at the instant @ 4 1 is the marking M’ =
(M{, M3) defined by:

M{ =M — ¥ R(@)-W(=1) +
teCo

Y R -W(,-)+ X
teC, (t,1)eC
where Cp = {t € T|R(t) > 0}

Ci={teT|R()>0A8(1)=1}
Co={(t,1) € T x N|M.(t,1) > 0}

M}: T x Nt — N with

, "o R(t), B =6(t)-1AR(t)>0
M’-’(t’ﬂ)z{ M(g()t,ﬂ}+1), c(>t%1erwise ®

The described step is denoted by the notation
M[R)M'. O

A particular case of the previous definition corre-
sponds to the case R = 0, reflecting the passage of
time on the execution of pending transitions.

From this definition it is deduced that, as happens
in ordinary nets, if a multiset of transitions R is en-
abled at an instant 8, then it is also enabled at any
later instant, at least as far as no new transition will
be fired, because the effect of passage of time can only
be positive, in the sense that the current marking can
only gain new tokens, each time the execution of a
pending transition terminates.

The previous definition allows us to associate to
TPN’s a (general) step semantics. We also will con-
sider two other more restrictive semantics.

Mo(t,1) - W(t,-)

Definition 4 (Timed Step Sequences)

Let N = (P, T,F,W,6) be a TPN and M, a marking
for it; we say that o = My[Bo) . .. Mn_l([-an_l)Mm is
a finite timed slep sequence of (N, Mp) iff:



: B; is a multiset of transitions

1. Vie%O,...,n—lL )
e empty

in T (which can

2.Vie {1,2,...,n} 1 M;_1[Bi—)M;, where M;_,
and M; are markings of N.

Note that from the initial marking M, the duration
of the sequence, and the non-empty steps B; along
it, with their firing times, we can construct the entire
corresponding step sequence. This will be denoted
by M[o{™)M,,, where ¢ = R(lﬁ‘) ...Rgﬁ'), with 8; <
B2 < ... < B, and each R; is a non-empty multiset
of transitions in T'.

We denote by P(N, M) the set of timed step se-
quences, defining the step semantics of the net N.

P(N,My) = {o]o is a finite timed step sequence

g for N from My}

The other two more restrictive semantics are de-
fined by restricting the firing rule in adequate ways:

Definition 5 (Restrictive Firing Rules)
Let N = (P, T,F W,6) be a TPN and M = (M, M>)
the marking of it at some instant € IN.

o We say that a multiset of transitions R is enabled
without overlapping of ezeculions of the same
transition (wo-enabled) at the instant B iff it is
enabled without restrictions, and V¢ € T" we have:

L. If 3y € IN, M3(t,y) > 0 then R(t) =0
2. R(t) <1

o We say that a multiset of transitions R is en-
abled without the simullancous firing of several
instances of the same iransition (wsf-enabled) at
the instant 3 iff it is enabled without restrictions,

o and Vt € T we have R(t) < 1.

Definition 6 (Restrictive Timed Step Sequences and
Semantics) Let N (P,T,F,W,8) be a TPN
and My a marking for it; we say that o
My[Bo) ... My _1[Bn_1)M,, is a wo-finite (vesp. wsf-
finite) timed step sequence of (N, My) iff it 1s an ordi-
nary timed step sequence, and all the steps along it are
wo-enabled (resp. wsf-enabled) at the correspondin

markings. We denote by S(N, M;) (resp. D(N, Mo)%
the set of wo-finile (resp. wsf-finite) timed step se-
quences of N from M,. O

Proposition 1 Timed Petri Nets such that all their
transitions have a duration of one unit of time are
(naturally) equivalent, under the timed step sequence
semantics to the associated ordinary net with its (or-
dinary) step semantics. O

3 The Reachability Problem and other
related problems for Timed Petri
Nets

3.1 The Reachability Problem

Besides the usual notion of reachability we also will
define the strict reachability, which has as goal both a
marking and the time at which we want to get it.
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Definition 7 (Reachability Problems for TPN’s)

Let N be a TPN, M a marking for it and # € IN. We
say that M is reachable (resp. strictly reachable at
the instant B) in N, which will be denoted by M €
[Mo), (resp. M € [Mg)g) iff there exists a finite step

sequence o such that Mo[o)M (resp. My[o'P)M). O

Theorem 1 (Decidability of the Reachability Prob-
lem for TPN’s) Let N = (P, T, F,W, Mp) be a TPN
and M a marking for it. We can decide if M € {Mo).

Proof: We must distinguish two cases:

1. If M is stable, then M is reachable in N with
regard to the timed step semantics iff it is reach-
able in the ordinary net associated to N, which
is obtained by ignoring the durations of the tran-
sitions in it. This is because we can always fire
the transitions more slowly, getting an equivalent
sequence without overlappings.

2. If M is not stable, we can consider the stable
marking M’ obtained from the marking M by
adding to it the tokens substracted by the firings
of the transitions which are in execution in M.
Then if M is reachable, M’ will be too, because
if we take the step sequence leading us to M, and
we avoid the execution of the transitions in exe-
cution in M, we obtain a step sequence leading us
to M’. But it is clear that in M’ we can fire (even
together) all those transitions, and in particular
we can fire them in the adequate way to reach M.
Thus if M’ is reachable, M will be too.

When the given Timed Petri Net does not contain
any autonomous transition, that is, when there is no
transition without preconditions, the strict reachabil-
ity problem is trivially decidable, as we can (finitely)
enumerate the reachable markings at the instant 3,
because at any instant we can only fire a finite num-
ber of multisets of transitions.

Theorem 2 (Decidability of the Strict Reachabil-
ity Problem for TPN’s without autonomous transi-
tions) Let N = (P, T, F, W, M) be a TPN without au-
tonomous transitions, M a marking for it, and § € IN.
We can decide if M € [Mg)p . O

Later we will prove, using the codification by Ordi-
nary Petri Nets, that the Strict Reachability Problem
is also decidable for TPN’s with autonomous transi-
tions.

3.2 Other related problems

The following problems can be posed on Timed
Petri Nets, and can be solved, and thus be proved
as decidable, by means of the codification that we will
present in Section 4.

Definition 8 Let N bea TPN,s€ P and k,3 € IN.
1) We say that N is s, k-linearly unbounded iff there
exists some ¥ > k, and some marking M such that
M € [Mo), and M(s) > 7.



i) We say that N is uniformly s-linearly unbounded iff
for all M € [M,) there exists some v € IN and some
marking M’ € [M), such that M’(s) > v.

iii) We say that ¢ is B-live iff for any reachable mark-
ing M there exists a marking M’ € [M)g enabling
the transition t. We say that N is G-live iff all its
transitions are S-live.

iv) We say that a marking M of N is dead iff there
is no transition enabled at M. We say that N cen §-
deadlock iff there is some dead marking M’ € [Mo)s.
a

We could also extend the usual concepts of liveness
and deadlock freeness to TPN’s in an straightforward
way. These properties can be proved to be decidable
in an easy way, by repeating the reasoning followed in
our previous proof of decidability of the Reachability
Problem for TPN’s.

4 Simulation of TPN’s with Ordinary
Petri Nets

To obtain this simulation we are going to split the
transitions of the timed net into pieces of duration 1,
and then to apply prop.1.

The construction is presented in a gradual way.
First the wo-finite timed step sequence semantics is
considered, getting a simulation which codifies the wo-
finite timed step sequences of the original net by the
occurrence sequences of the constructed net. In a sec-
ond step, the construction is extended to cover the
wsf-finite timed step sequence semantics; and finally,
the general firing rule is also studied.

In this construction we do not represent the passage
of time by means of an special transition; instead we
have an implicit clock, represented by the number of
tokens over a distinguished place. Each token added
to this place represents the passage of one unit of time
(that is to say the execution of one step) in the original
Timed Net.

We begin by introducing a definition borrowed from
(8], which allows us to model any finite state automa-
ton by means of an Ordinary Petri Net.

Definition 9 (Petri Net modelling a Finite State Au-
tomaton) Let 4 = (Q',X/,0,8,1’,q) be a finite
state automaton, where

. Finite set of states

Z' . Inpul alphabet

©':  Ouiput alphabet

8. State transition function :6' : Q' x &/ — Q'
I'": Outpul function : TV : Q' x &' — O

go: Initial state, go € Q'

verifying that Q’, £’ and ©’ are disjoint each other.
Then we define the Ordinary Petri Net N(A4) =
(P, T, F,W, Mp) modelling the behaviour of A as fol-
lows:

P=Q U U®
T={(g,0)lgeQ Ao eX}
F={(g,t)lqeQ At=(q,0)€T}U

{(o.)lc€Z At=(q,0)€eT}U
{#. )N =8(q,0)€Q ANt=(q,0) €T} U

157

t,0
W(f)=1,

A4
_J 1 ifp=gqo
Mo(p) = { 0 otherwise
]
4.1 Case 1: wo-finite timed step sequence

semantics
The construction is based on a finite state automa-
ton controlling the system evolution.

Definition 10 (Non-Timed Petri Net associated to
a TPN) Let N = (P,T,F,W,6, M) be a TPN.
The Non-Timed Peiri Net associated to N is the net
N" = (P",T" F" , W", M}/) obtained by applying the
following construction.

First we define the automaton A
(Q',X,0,8 TV, q0) that controls the evolution of N,
as {ollows:

Q' ={(e,...,a) EN"In=[T| A0 < g; <6(t;)-1}
70 =1(0,...,0)
Y = {(4,m)|A € P(T)}
O = {(out, A)|A € P(T)}
§:Q xL —Q ,I": Q x L — O, defined by
(4) (¢,(A, in)) 1s defined iff Vt; € 4, ¢; = 0.

In such a case é'(q, (A4, in)) = ¢/, where:

,_._{q;;l ift;g A
%=

8t)-1 ift;eA
where represents the corrected substraction, de-
fined by z ~ y = Maz{0, z — y}
(i) T'(q, (A, in)) = (out, C), where
C={(t; € Tl¢' = 8(g,(4,1n)) A ((gj > OA
2;=0) V(g =0At €AAtL)=1))}

The states of this automaton represent the tran-
sitions in execution in the markings of the original
Timed Net. Each component of a state tells us if there
is some executing instance of each transition, and in
such a case the time left till the conclusion of its exe-
cution. In particular, the initial state corresponds to
any stable marking. The inputs of the automaton rep-
resent the steps to be executed at each moment, while
the outputs indicate the sets of transitions terminat-
ing at each instant. In particular, the empty set in
¥/ corresponds to the passage of time, that is to say
to empty steps. Finally functions 8’ and IV codify the
firing rule of the original Timed Net.

Let N(A) = (P, T',F', W', M{) be now the Non-
Timed Petri Net modelling the automaton that we
have just defined. We define the Non-Timed Petri
Net N = (P",T", F",W", M{') representing (under
the current restriction) the Timed Petri Net in the
following way:

P"=P U P U {clock}
TH - TI
F" =F{ U FYJ, where:
=" EFI = (g,) v £ = (t.0),
where ¢ € Q', t' € T}
Fy ={(p,t)lpEP At €T At = (¢ ,(A in))A
teANtep}U{{t,p)lpeEP AL ET A




(t',(out,A)) e F" Apet* Ate AU
{(t', clock)|t’ € T'}
L if f= (' clock) Vv feF/

2 Wipty) if f=(pt") € Fy A

wo(fy=4 P47 ' =(¢,(A, )
Y Wit,p) iff= (t',p) € Fj§, where
1€Ta To={teAlpet*}
with (', (out, A)) € F'
0 if p = clock
1 if p corresponds to the initial
M{(p) = state of the automaton

My(p) ifpe P
0 otherwise

Definition 11 Let N be a TPN and N” the asso-
ciated Non-Timed Petri Net. We denote by M the
set of markings of N, and by M’ the set of mark-
ings of N". For any marking M = (M, M3) in M
let S(M) = (q1,...,9n) be the associated state in Q’,
which is defined as follows:

__ ) 0 if Ay such that My(t;,7) > 0
%= 4 if 3y such that Ms(t;,v) >0

Finally, we define the marking correspondence func-

tion <p‘]7\, : M — M associated to N for an instant

8, in the following way:

el if p= clock
B )1 if p=S8(M)
(M) (p) = My(p) ifpeP
0 otherwise

[mi

Theorem 3 Let N = (P,T,F,W,§ M) be a TPN
and N = (P". TV, F" W" M{) the associated Non-
Timed Net. Then for any two markings of N, My, Mo,
and for any set of transitions R C T we have:

M [R) M3 iff o, (My)[(S(My), (R, in)) Yo (M)
(V8 e N)
Proof: It is an immediate application of Def. 3. O
Definition 12 Let N = (P, T, F, W, 6, My) be a TPN
and N” = (P", T" F" W', M) the associated Non-
Timed Petri Net according to t(ixe wo-finite timed step
sequence semantics. The function relating both se-
mantics, ¥ : S(N, Mp) — L"(N", MY), is defined
{)or each ¢ = Mo[Bo) ... Mn_1[Ba_1)M,, '€ S(N, Mp)
Y
(o) = p{ (Mo)top k(M) t, _ o (M,)

where t; = (S(M;),(Bj,in)), for j=0,...,n—1.0
Corollary 1 Let N = (P, T, F,W,6, My) be a TPN,

N" the associated Non-Timed Net according to the
wo-finite timed step sequence semantics and ¢ =

BV BP) with B; C T, B; # 0,6 € N, Vj €
{L,...,r} and B; < ... < B,. Then:

Mo[e™))M,, if and only if O (Mo) (o)) (M,) O

T
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Next, using this restricted semantics we study the
decidability of the properties that we have introduced
in section 3. Firstly, since we cannot have overlapped
executions of each transition, the computations tree
is finitary, and thus the strict reachability problem,
the B-liveness problem, and the §-deadlock freeness
problem, are trivially decidable, just by exploring that
tree up to depth 5.

Also, s, k-linear unboundness and uniform s-linear
unboundness properties can be decided using the given
simulation,

Proposition 2 Let N = (P, T,F,W.§ Mp) be a
Timed Petri Net, and N’ = (P',T', F', W', M{) the
associated Ordinary Petri Net, following Def. 10. We
have:

i) N is s, k-linearly unbounded iff we have some M’ €
[Mg) with M’(s) > M'(clock) > k.

11) N is uniformly s-linearly unbounded iff for all M’ €
[M{) there exists some M" € [M') with M"(s) >
M"(clock).

Proof: Immediate consequences of Cor. 1. O

Corollary 2 The s, k-linear unboundness property,
and the uniform s-linear unboundness property of
Timed Petri Nets with their wo-finite timed step se-
quence semantics, are both decidable.

Proof: As concerns the first property, we can decide
the property of Ordinary Petri Nets to which we have
reduce 1t, by adding to the net a new transition firable
when time £ has ellapsed, and whose effect is the re-
moval of one token both from s and clock. Then we
have that N’ has the desired property iff a marking
with no tokens in the place clock is reachable.

For the second property, we add to N’ the same
transition as in the former case, and we have that it
has the desired property iff the set of markings with
no tokens in the place clock is a home space of the net,
property that has been proved to be decidable in {2,3].
a

4.2 Case 2: wsf-finite timed step seman-
tics

Now our aim is to generalize the construction pre-
sented in the previous section, to wsf-finite timed step
semantics.

The necessary modifications are not too deep, be-
cause although we can have several instances of the
same transition executing simultaneously, we cannot
have two such executions beginning at the same time.
Thus the differences between the previous construc-
tion and the current one will be based on the sub-
stitution of tuples indicating if there is some pending
execution of each transition, by sets of pairs (¢,n),
whose elements indicate that there is some pending
execution of ¢ that will terminate after time n .

Definition 13 (Non-Timed Petri Net associated to a
TPN) Let N = (P, T, F, W,6, My) be a TPN. We de-
fine the automaton A controlling the system evolution
corresponding to the wsf-finite timed step sequence se-
mantics of N as follows:



A = (Q’v 2/)611 6,: Flv 90)
where:

Q’;—_Q;P({('t‘n)h €T A nefl,... &1 -1}})

o =

2= {(A,in)|AeP(T)}

0’ = {(out, A)|A € P(T)}

8. Q' xY —@Q ,": Q@ xX' — @, defined by
1) 8 (q,(A,in)) = {(t,n)In>1A(t,n+1)€Eq}U
) {(5?5&) - 1)§|t e% A 25'(t)"> 1} ( )€ d)

(#7) I"Sq,(A, in)) = {teTi(t,1)eqVv (t€AA

6(t) = 1)}

Again, the desired Non-Timed Petri Net is ob-
tained by applying first the construction in Def.9 to
the automaton just defined, and then constructing the
corresponding net N’/ exactly as in Def.10. O

The algorithms to decide the properties in Section
3 are analogous to the corresponding ones for the case
of wo-finite step sequence semantics. In particular, the
computations tree is still finitary, and thus most (the
same that in the former case) of the properties can be
decided just by exploring it up to the given depth.

4.3 General construction

In this section we will study TPN’s with their un-
restricted step semantics. In this case the simulation
cannot follow the same procedure as in the preceding
cases, since in general we would obtain a net having
an infinite number of places, if doing so. Thus to de-
velop the construction we will follow a rather different
idea. The first step will be to consider Non-Timed
Nets, with their step semantics, showing that this se-
mantics can be simulated by the occurrence sequence
semantics of an associated Non-Timed Petri Net.

Definition 14 Let N = (P, T, F, W, M) be a Non-
Timed Petri Net, M a marking for it, 3,k € IN and
s € P.

i) We say that M is reachable in N in 8 steps, which
will be denoted by M € [Mo)s, iff there exists a se-
quence o of non-empty steps of length 8 such that
Mooy M . Sometimes we will also accept empty steps,
which is of course equivalent to allow sequences (of
non-empty steps) of length less than or equal to the
given number of steps 8. The corresponding reacha-
bility relation will be denoted by writing M € [Mo)5 .
it) We say that N is s, k-linearly unbounded iff there
exists some v > k, and some marking M such that
M € [Mo)y and M(s) > 7.

iil) We say that N is uniformly s-linearly unbounded
iff for all M € [My) there exists some v € IN and some
marking M’ € [M), such that M'(s) > 7.

iv) We say that t € T is B-live iff for any reachable
marking M there exists another one M’ such that
M’ € [M)p enabling t. We say that N is f-live iff
all its transitions are S-live.

v) We say that a marking M of N is dead iff there is
no transition enabled at M. We say that N can 8-

deadlock iff there is some dead marking M’ € {Mo)g.
[m]

To prove the decidability of these problems, we will
construct for each net another one that simulates (tak-
ing into account the length of sequences) the step se-
mantics of the first one, by means of the ordinary oc-
currence sequence semantics of the constructed net.

Definition 15 (Construction 1) )
Let N = (P, T, F,W, Mp) be a Non-Timed Petri Net.
We define the following sets of (new) places and tran-

sitions: _
P={plpe P}
sz = {tglp € P}
17 = {t;|p € P}

Then we define the net N’ associated to N, by
N' = (P, T', F',W', M), where
PP=PUPU {fstep> Cstep clock, ﬁa}
T'=T U T} UTE U {nguep, t', ¢4, 7}
F'={(t,p), (t5,p), (t2,0), (B, 13), (B, 1), (fstep,tp),
(Cstep;ﬂ); (t:,Cszep)Kt,P) € F} U {(fstep:t)x
(t, faepit € T) U{(p,D)(p,1) € F}U
{(Cste;n nstep)a (”step»fstep)} V] {(tp, CIOCk'),
(tp cstep)lp € PY U {(t,P)It €T At =0}U
{(tlycstep)s (tzycstcp)) (_cstepuiz)y (fstcputl),
(Ps, 1), (1, clock), (Ps,t?), (r, clock)}
W(t,p) if f=(tp).peEP
W(f) = Wi(p,t) if f=(pt)EF
1 otherwise
Mo(p) ifpeP
My(p) = 1 if p= fotep
0 otherwise
(m]

The construction is illustrated by figure 1. -

Definition 16 Let N = (P, T, F,W, My) be a Non-
Timed Petri Net and N’ = (P',T',F', W', M{) the
associated net according to the previous construction.
For each 8 € IN we define the marking correspondence

function <p,ﬁv ¢ M — M’ as follows:

M(p) if pP=peP

. 1 if 9/ = fste
WM =4 5 b Tier
0 otherwise

where M and M’ are the sets of markings of N and
N’ respectively. O

Definition 17 (Multiset associated to an occurrence
sequence) Let N be an ordinary Petri Net and o an
occurrence sequence of it. We define the multiset as-
soclated to ¢ B(c) : T — IN as follows:
0 if o= §)
B(o)(t) = { B(s)t)+1 if o= (s)ot
o B(s)(t) if o=(s)ot' t'#1
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Figure 1: Construction 1
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Theorem 4 Let N = (P,T,F, W, M) be an Ordi-
nary Petri Net and N’ the associated net according
to Def.15. Then, given two markings of N, M, My,
and given a multiset B of transitions of T, we have
M{B)M, if and only if there exists an occurrence se-
quence o in N’ such that:

L R M)yt (My), Ve

2. B(o)(t) = B(t) VteT

Proof: Let us suppose that M[B)M;. Then, if B is
empty it is sufficient to take as o the transition r in
N’. If B is not empty, then since we can fire together
in N all its elements from the marking M, then in
N’ we can fire them in a row in any order, from the
marking <p[,3V(M) After that we distinguish two cases,
depending on if there is some transition in B, t, with
t* # 0. If there is some such transition, we take any
of them t, selecting any of its output places s, and
firing the transition t}. Next, we fire as many times as
possible all the transitions in {tZ|p € P} U {t?}, until
all the places in {f|p € P}U{p,} are empty. Finally we
fire the transition n., to recover the token over fysep,
which allows the firing of a new bag of transitions. Tt
there is no transition ¢ in B with t* # 0 we first fire
t! to add a new token to the clock, and after ¢? until
Ps becomes empty.

For the converse, we have that either o is r, and
then it corresponds to an empty step in N, or ¢ =
tfltg...tstzlwtg2 .. .tgrns,ep, with s > 0. Since the fir-
ing of transitions from 7" in N’ remove from their pre-
conditions the same number of tokens that the corre-
sponding firings in N, but it puts no tokens over the
original places in P, but over the associated ones in P,
then it is clear that we can fire in N at M the multiset
of transitions B(t1ts . ..1,), getting some marking Mo.
But, by hypothesis after firing ¢ we get some mark-
ing <pf’v+1(M1), and this implies that the transitions
in {t;,}U{tZl7 =2,...,r} exactly correspond to the
displacement to the original places in P of the tokens
over the places in P, generated by the firing of the
transitions in 2,25 ---f,. As a consequence M, must
be equal to M), which concludes the proof. O

A bit surprisingly, this result cannot be generalized
to sequences of steps. This is due to the fact that

the corresponding first condition for the desired oc-
currence sequence o, would be

M) (M), VBEN

where n is the length of the given step sequence. The
problem is that nothing is said about the intermediate
markings, so that it is perfectly possible to increase the
number of tokens on the clock place without firing any
transition from the original net. This is not only due
to the existence of the transition r. Even if we remove
it the problem remains, because we are not obliged to
return all the tokens over the places in {p|p € P}, be-
fore the beginning of the next cycle of a computation
of N’. But in such a case, this next cycle can begin
with the execution of a t;‘, transition, and so a new to-
ken would be added to the place clock without having
executed any new t transition simulating those in N.

This implies that in the net N’ {even with the re-
moval of the transition r) the firing of transitions in T’
can occur more slowly than in N’. To be exact, if we
have in N’ without r that cpfv(M)[a)gpﬁf"(Ml), then
we have in N, My € [Mp)5 . But the converse would
not be true without the introduction of the transition
r that allows us to leave the time pass whenever we
desire to do it. That is why we introduced it, arriv-
ing at the following theorem, which needs a previous
definition.

Definition 18 (Step sequence of N corresponding
to an occurrence sequence of N') Let N = (P, T,
F,W, Mp) be an Ordinary Petri Net and N’ the asso-
ciated net following Def.15. If for two markings of N,
M and M’ we have ¢ (M)[o)%" (M), where ¢ =
0y ...0, 1s an occurrence sequence in N', we define

1. The tic subsequence of o, tic(o) = oy, --- 05, as
that constituted by the transitions along it in the
set {t;|p € P}U{t},r}

2. The step guided decomposition of o is that defined
by 0 = 0' 0-.- 00" 0 06™*! where for each j €
{1,...,n} we have ¢ = 0y,_,41-- 0y, taking
io=0,and o' =0y 41...0,.

3. The step sequence of N (possibly containing
empty steps) simulated by o is that defined by
BS(s) = B(a')--- B(a™)

O

Theorem 5 Let N = (P,T,F, W, M) be an Ordi-
nary Petri Net, N’ the net associated to it following
Def. 15, and n € IN. If for two markings of N, M and
M’ we have o (M)[o)@ht™ (M), then in N we have
M[BS(o))SM; .

Proof: (sketch) As we said before, it is possible
that the displacement of the tokens on the places in
{P|p € P} to the corresponding original places, will
not be done in the same “cycle” in which they were
generated, but later on. But it is easy to check that
all these displacements can be moved forward to the



corresponding cycles that generated them, and then
we can apply Th. 4, to conclude the proof. O

Corollary 3 Let N = (P, T,F, W, M,) be an Ordi-
nary Petri Net, M a markingof it,s € P,and B € IN.

1. We can decide the Strict Reachability Problem
when we allow empty steps.

2. We can decide the s, k-linear unboundness prop-
erty and the uniform s-linear unboundness prop-
erty when we allow empty steps.

O

Theorem 6 Let N = (P,T,F,W,$é, My) be an Ordi-
nary Petri Net, and § € IN. We can decide if N is
B-live.

Proof: We consider the net N’ associated to N by
applying Def. 15. Then let t € T'; the S-liveness of ¢ in
N can be decided by adequating the process followed
in [2] to prove the decidability of (usual) liveness for
Ordinary Petri Nets.

In that paper it is shown that for any net N, we
can obtain a finite set of reachable markings of N
{M},..., ML} verifying that for any reachable mark-
ing M’ there is some i € {1,...,b} such that M’ cov-
ers My (which means Vp € P M'(p) > Mi(p) and is
denoted by M’ > M§ ).

We apply this result to our net N,’,, getting the set

{M},...,M}L}. Then, we consider the marking M?
associated to t in Nj, defined by: M*(p) = W’(p,1),
Vpe P

We have to test, if for alli € {1,...,b} there is some
M” € [M}) such that M”(clock) = ME(clock)+ B and
M > M".

For we define a net N’;, = (P, T, F“,W”,M’g")
associated to N, which is obtained from N’ by revers-
ing time, which means to reverse all the arrows in F’
reaching the place clock, initializing this place with
3 tokens, and the rest of the places with their num-
ber of tokens in M%. Then we test if there is some
M" € [M'5") such that M* > M". This can be done
by studying the coverability tree of N"ﬁ.

If any of these tests fails, then ¢ is not S-live in the
original net N. Otherwise, it is, because for any reach-
able marking M; in N there issome i € {1,...,b} such
that ME > Mj. Then, we have some reachable mark-
ing M” from this marking M} such that M"(p) >
M'(p), for all p € P and M"(clock) = Mi(clock) + 3.
Now the occurrence sequence o such that Mi[o)M"”
can be fired from M, as it covers M}, leading us
to a marking covering M", and with 8 tokens more
over the place clock than the original marking. Thus
the corresponding marking can be reached in N by an
step sequence of length 3, and ¢ will be enabled at this

marking, thus proving that the transition ¢ is S-live in
N.D
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Figure 2: Construction 2

Note that we cannot solve, at least in a direct way,
the B-deadlock freeness problem with this first con-
struction, because the transition r is autonomous, and
thus the associated net cannot get deadlocked.

Next we present a second construction that elimi-
nates the discussed problem, allowing us to simulate
correctly the step semantics of a given net, without
the allowance of empty steps.

Definition 19 (Construction 2)

Let N = (P, T, F,W, M) be a Non-Timed Petri Net.
We consider the following sets of (new) places and
transitions:

P = {plp€ P}
T = {t!|t e T}
TS = {5t e T}

Ty = {tilpe P} for k=1,2
We define then the associated net N’ =

(P, T',F'\W' M), as follows:

P'=P U P U {& u {p,p° clock, ps}
T'=T' UTS UT! UT?U {nge,t' t*}
F' = {(p5,15), (5, 7%), (2, 1), (1, p°)It € TYU
{(,p), (¢, p)I(t,p) € F} U A(p,15), (P.15),
(B,12), (8,8, (&,12), (82,2), (t},p), (t3,P)

Ip€ P} U {(t', clock)|t € T} U {(p,t'),

(2, t%)|(p,t) € FY U {(t),5,), (t°,5s) It €T,
t. = m} U {(p.htl)a (tlwé)y (é)tz): (tzvé)y
(ﬁs,tg)‘ (Ps,tl), (é|nAstep)» (nste}aypl c
W(p,t) iff=(pt") Vv f=(pt),

teT

7 —_
W'(f)= W(t,p) iff:(il,ﬁ) \Y f=(is,17)
1 otherwise
My(p) ifpeP
Mi(p) =1 1 if p = pf
0 otherwise

This construction is illustrated by figure 2. The key
idea to understand it is that each step B of the original
net N is simulated by the following sequence of firings:
first an arbitrary transition ¢ € B is selected, and the
corresponding transition ¢! fired, which updates the



clock to reflect the execution of the step. The role of
places in {p|p € P} is analogous to that of the same
set in construction 1. So, after the firing of t! it is
only possible to fire a sequence of transitions from 7%
that can be executed together at the same time that
the fired ¢ (in particular any sequence constituted by
the transitions in B — {t}) until some t; transition will
be executed, which disallows the firing of transitions
Tt5, and thus implies that the next execution of a
transition associated to those of the original net will
correspond to a new step.

Observe that since time only passes when some
transition from 77 is executed, empty steps are not
possible at all.

By means of this net we can simulate again the step
semantics of N, obtaining the corresponding versions
of theorems 4 and 5, thus concluding the following
corollary.

Corollary 4 We can decide the strict reachability
problem, the s, k-linear unboundness property and the
uniform s-linear unboudness property. O

However, this second construction raises a new
problem, which is the possible introduction of new
deadlocks in the constructed net. As a consequence,
liveness can be lost. The reason being that if the places
in P are not completely empty before the firing of tran-
sition ngep, then it is possible that there will not be
in the original places of the net enough tokens to fire
any transition in 7', thus becoming blocked.

As a consequence [-deadlock freeness and f-
liveness cannot be decided, at least in a direct way,
by using this simulation. Fortunately we have a third
proposal, which has neither this problem, nor the one
commented on in our first construction.

Definition 20 (Construction 3)
Let N = (P,T,F, W, Mp) be an Ordinary Petri Net,
P, 7! TS, Tpl, TP2 the sets introduced in Def. 19 for
this net and N’ the net associated to N according to
that construction. Now we consider a new set, Trf’ =
{t3|lp € P}. and we define the net N” associated to N
as follows:
N"= (P, T'UTS U {3, F' UF, W M)

where:

F={@18), 0", 4), &,p"), (t3,plpe P}U

{0, ¢%), (2,0") (Bs,1%)}
W = { W) it e F

otherwise
a

The only essential difference with respect to the
previous construction is the introduction of a new
transition for each place of the original net tg, to al-
low us to empty the places p, when they have some
token after a simulation of a step. It can be only done
when p! is marked, that is, when there is no step in
execution.
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Again, the corresponding versions of Th. 4 and Th.
5 can be proved, which allows us to conclude the decid-
ability of the (-liveness and 3-deadlock freeness prop-
erties.

Corollary 5 The S-liveness property and the 3-
deadlock freeness property are both decidable.

Proof: The demonstration of the first one follows the
same idea as those of the same results using the for-
mer constructions. The decidability of the §-deadlock
freeness property can be solved by modifying the as-
sociated Ordinary Petri Net, adding a transition life
which will be enabled forever whenever the place clock
has (at least) 8 tokens. That is obtained by taking

W (clock, life) = B = W (life, clock)

Thus after time 8 we will have no deadlocks in the
so modified net, and so it will have deadlocks iff the
original net has f-deadlocks. O

4.4 Simulating Timed Petri Nets with

their unrestricted semantics

The construction that we make to codify Timed
Petri Nets with their general semantics, is based on
the splitting of each transition ¢ in 6(t) transitions,
corresponding to each instant along the execution of
t. Intuitively, in order that this codification will per-
fectly simulate the behaviour of timed nets, it seems
that the application of the maximum parallelism hy-
pothesis to the transitions corresponding to (original)
transitions in execution is required. However, as we
will see later, although we ignore this (in general im-
possible to be represented in the Ordinary Petri Net’s
world) restriction, the executions of transitions that
do not obey this hypothesis can be seen as starting a
little later, thus fulfilling the hypothesis, and so the
simulation is meaningful.

Definition 21 (Net associated to a TPN)

Let N = (P,T,F,W,6, M) be a TPN. Foreacht € T
we will consider a set of (atomic) transitions C; =
{t1,...,ts(y}. Then we define the Ordinary Petri Net

associated to N, N' = (P, T', F', W', M}), as follows:
U

PP=PU & Pi=1,....80) -1}
T/= t%JT Ct
F'= {(pts))lpEP AN tET A (pt)€ F}U

(B t)lteT Aie{l,...,8(t) -1} U
{tplteT A peP A (t,p)€F} U
{(tis1, N ET Ade{1,...,6(t)—1}}

Wip,t) if f=(p,tsu))
Wi(F) =4 W(tp) if f = (tn.p)
1 otherwise

_ ] My(p) ifpePp
Mq(p) = { 0 otherwise

m}

Definition 22 Let N = (P, T, F, W, 8, My) be a TPN
and N' = (P, T, F', W’ M) the associated Ordi-
nary Petri Net. We define the marking correspondence
function pn : M — M’ as follows:



M(p) ifp=peP
en(M)(P) = Ma(t,i) il p' =pi¥, for
1<i<b)—1

0

Definition 23 Let N = (P, T, F,W,$, My) be a TPN
and N' = (P, T, F', W’ M{) the associated net ob-
tained according to the previous construction. We de-
fine the step correspondence function as follows:

T M x B(T) — B(T")

"N B(t) ifi’:t&(;),tET
T(M'B)(t )_{ Mz(t,“/) if t/ = t-y, v < tb(l)v teT
where 3(T) (resp. B(T")) is the set of all the multisets
in T (resp. 7). O

Theorem 7 Let N = (P,T,F,W,6, My) be a TPN
and N/ = (P, T', F',W’, M}) the associated net ac-
cording to the construction in definition 21. Let
M, M’ be two markings of N and B a multiset of
T'. Then we have:

M[B)M' if and only if on(M)[r(M,B))en(M') O

Corollary 6 Let N = (P, T,F,W,6, My) be a TPN
and N'' the net constructed over the net associated
to N, N’, by applying the construction of Def. 20.
Then, M = (M,, M>) is a reachable marking in N at
the instant @ if and only if there exists a reachable
marking M’ in N” such that:

(1) M'(p) = Mi(p) VpeP

2) M'(P") = Ma(t.i) VteTA
Vi:l<i<é(t)-1}

(3) M'(clock) =3

(4) M(p)=0 otherwise

Proof: The left to right implication is an immediate
application of the equivalent theorems to Th.4 and
Th.5 for the third construction. Let us look at the
converse.

Let M’ be a reachable marking in N verifying the
conditions (1-4). For this marking there exists a mark-

ing M in N’ such that o (M) = M’ . Then, from the
equivalent theorem to Th.5 for the third construction
we obtain that M is reachable in f steps. Besides,
M = on(M). The step sequence in N’ allowing us to
reach M in N’ does not necessarily satisfy the max-
imum parallelism hypothesis restricted to the atomic
transitions corresponding to the instants of transitions
in execution. In consequence, we cannot apply Th.7
step by step to conclude that M is reachable in 3 steps
in N. However, we can delay the activation times
of the components of each execution of any (original)
transition not satisfying the defined maximum paral-
lelism condition. To be exact, we see when the last
component of each execution has been fired, and we
take as firing time for the original transition that time
minus the duration of the transition plus one. Then
we consider the firing in a row of the components of
the transition from that instant, and so we obtain
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an equivalent step sequence satisfying this condition.
Then we can apply Th.7 step by step, concluding that
the marking M is reachable in 3 steps in N. O

Corollary 7 Let N = (P, T,F,W,6, M) be a TPN,
M a marking of it, and # € IN. Then the following
properties are decidable:

1. The strict reachability property.

2. The s-linear unboundness property and the uni-
form s-linear unboundness property.

3. The B-deadlock property
4. The (-liveness property.

The first sentence is an immediate consequence of the
previous corollary. The other ones are obtained by
considering that these properties are preserved by the
codification to Ordinary Petri Nets with its step se-
mantics, for which the decidability of these properties
have been solved. O
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