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Abstract 
In  this paper we consider Timed Petri Nets, for 

which a timed step semantics generalizing the ordinary 
step semantics is presented. A codification of them, 
with regard t o  such semantics, b y  Ordinary Petri Nets 
is presented. This codification is presented in a gradual 
way, beginning with that corresponding to a more re- 
stricted an.d thus simpler step semantics. This seman- 
tacs does noi a l low  the overlapped firin.9 of several in- 
stances of each transition. Next, we consider a step se- 
mantics which, allows such overlapped execution.s, but 
not the sinzu.lian,eous firing of several instances of the 
same tramition. In  both restricted cases the constru.c- 
tion as based on an automaton which controls the sys- 
tem evolution. The construction f o r  the most general 
semantics is rather more complicated, that is why it is 
presen.ted gradually. We consider three versions of ai., 
being the two first ones easier t o  understand, but hao- 
iiig each on.e a di,fferent problem that we would probably 
like to  avoid; ih.is is made b y  the third construction, 
which refines the previous ones. Finally, we use th.is 
simulation to decide several problems on Timed Petri 
Nets. 

1 Introduction 
In this paper we introduce a class of Timed Petri 

Nets that are obtained from (Ordinary) Petri Nets by 
associating a. duration to  the execution of each tran- 
sition of the net. We present a codification of them 
by means of Ordinary Petri Nets. This allows us to 
simulate their timed step sequence semantics by the 
ordinary occurrence sequence semantics of the corre- 
sponding translation. This simulation allows us to 
translate to Ordinary Petri Nets the timed versions 
of a collection of properties on Petri Nets, like Reach- 
ability, Liveness or Deadlock Freeness. Thus we can 
conclude their decidability, since they are decidable 
for Ordinary Petri Nets (see [4,5,6]). We have found in 
the literat,ure two versions of timed extensions of Petri 
Nets. The first one, Time Petri Nets (see [7]), asso- 
ciates two integer numbers to each transition. These 
numbers represent, respectively, the moment at which 
the transition can be fired and the moment at which 
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must fire a t  the latest (both with regard to  the in- 
stant at  which the transition is enabled). In Time 
Petri Nets the firing of transitions takes no time. The 
second version, Timed Petri Nets (see [9]) is the one 
that we study in this paper. It is based on the asso- 
ciation of an integer number to  each transition, which 
indicates its duration. The only scheme of codifica- 
tion of Timed Petri Nets by Non-Timed Petri Nets of 
which we have knowledge is that presented in [l]. It is 
done by modelling the passage of time by means of a 
clock cont,rolling the net behaviour, represented by a 
transition generating ticks periodically. However, this 
scheme complicates the modelling of synchronizations. 
Furthermore, to model the coincidences of events at 
the same instant it is necessary to include some places 
with capacity 0,  with the aim of maintaining the syn- 
tact,ic definition of Petri Nets. This means a violation 
of the net semantics rules, and thus we consider that 
such scheme of codification is not adequate. since it 
is not done in the strict ordinary net framework. On 
the other hand, that construction does not allow over- 
lapped executions of the same transition, which would 
be natural to allow when generalizing the firing rule 
to Timed Petri Nets, in an straightforward way; since 
before an execution of a transition will finish we could 
be able to fire it again. It is even possible that taking 
the Step Semantics as a starting point, we would like 
to allow the simultaneous firing of several instances of 
the same transition at  the same instant, as far as it 
would be allowed by the firing rule. 

The construction that we present is based on the 
representation of the passage of time not by a ‘spe- 
cial’ transition, but by an ‘absolutely standard’ place. 
Thus we obtain a strict codification just using ordinary 
nets, which allows t.o use the full Petri Nets theory 
to study Timed Petri Nets. Besides we take a timed 
step semantics as semantics of the Timed Petri Nets. 
This one will  be simulated by the standard semantics 
of the corresponding Petri Net. In this way, we let 
both the overlapping and the simultaneous firing of 
either the same or several transitions, as far as the fir- 
ing rule allow. We also consider two more restrictive 
semantics, avoiding either the simultaneous firing of 
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several instances of the same transition, or even over- 
lapped executions of such instances. The  main reason 
for considering these semantics is that  the codification 
is much simpler than in the general case. These codi- 
fications, which are presented in sections 4 . 1  and 4 . 2 ,  
can be done by means of an automaton controlling 
the system evolut,ion. These automata can be imme- 
diately codified in terms of Ordinary Petri Nets (see 

The general construction covering the step seman- 
tics without restrictions, is presented in section 4.3. 
We consider three different const,ructions t80 realize the 
codification because the two first ones are simpler, and 
easier to  understand. Nevertheless each construction 
has a problem that we would possibly like to  avoid. 
The first solution has the problem that the simulation 
allows empt,y steps, and the second construction does 
not, preserve liveness in general. Finally, the third con- 
struction has not any of these problems. 

The paper is structured as follows: in section 2 we 
define Timed Petri Nets and their semantics; in section 
3 we introduce several problems on Timed Petri Nets 
that can be solved using our simulation, by reducing 
them to related solved problems on Ordinary Nets. 
Finally, as described before, in section 4 we present 
the different constructions defining the codifications 
for each case. 

2 Timed Petri Nets 
Definition 1 (Timed Petri Net) 
Let C be an infinite alphabet. 
Petri Net, (TPN) as a tuple ( P ,  T ,  F, W ,  61, where: 

PI ). 

We define a Timed 

P : Finite set of places 
T : Finite set of transitions (disjoint with P )  
F C_ P x TU T x P (Set of arcs) 
W : F - IN+ (Weight of the arcs) 
6 : T - IN+ (Durations) 

0 

The effect of t,he firing of t,imed transitions is for- 
malized as follows: when a transition is fired, we will 
remove the corresponding tokens from its precondi- 
t,ions, and only when the transitmion ends (aft,er the 
corresponding dura.tion tinie has passed) we add the 
corresponding tokens to  the postconditions. This im- 
plies the necessit,y of adding to the ordinary markings 
a second component which indicates what transitions 
are in execution, and for each one of them how much 
time is left till its termination. 

Definition 2 (Markings of Timed Petri Nets) 
Let N = ( P ,  T I  F,  W ,  6 )  be a TPN.  A marking M for 
N is a pair ( M I  , M z ) ,  where M I  E I N p  and M Z  is a 
finite multiset of pairs in T x IN’ such that Vt  E T 
and V7 2 6 ( t )  : M z ( t , y )  = 0. 0 

We will call ilfl t,he current m.arkin.g (here marking 
has t.he ordinary mea.ning), and we say t,lia,t M? is t,he 
multiset of pending transitions. We have considered 
multisets of pending transitions instead of just sets, 
in order to allow the overlapped firing of any kind 
of transitions. Thus we have the maximal generality, 

and we are free to introduce restrictions when defining 
the firing rule, if we desire to introduce any kind of 
limitation. 

Contrary to  what happens in ordinary nets, a t  a 
concrete instant a Timed Petri Net may have a deter- 
mined current marking, and in the next instant this 
marking will change, even though no new transition 
has been fired, by effect of the termination of some 
transition (or several) which were in execution. 

On the other hand, if no new transition is fired from 
a certain instant on, the marking of the net will only 
suffer variations for a finite time, stabilizing itself a t  
certain instant. These stable markings are those such 
that Mz = 0. Naturally, initial markings should be 
stable. Thus, we say that  a marking M = (MI, M z )  
can be initial iff Mz = 0. 
Definition 3 (Firing Rule) 
Let N = (PI TI F,  W,  6) be a TPN and M = (MI, k f z )  
the marking of it a t  some instant p E IN. We say that 
a multiset of transitions R is enabled at the instant p 
iff 

Ml(P) 2 E R @ ) .  W(P,t) ,  VP E p 
tET 

If any multiset of transitions R is enabled a t  an instant 
p E IN, and we fire them a t  that instant, the reached 
markin a t  the instant /3 + 1 is the marking M’ = 
( M i ,  M,) defined by: 5 

Mi = A41 - R ( t ) .  W ( - , t )  + 
tEC0 

c R(t)  . W ( t ,  -) + c M z ( t ,  1) . W ( t ,  -) 
( t  ,1)EC2 tECl 

where CO = { t  E TIR(t) > 0) 
C1 = { t  E TIR(t) > 0 A 6 ( t )  = l }  
C, { ( t ,  1) E T x INIMz(t, 1) > 0) 

A4; : T x IN+ - IN with 

if p’ = 6 ( t )  - 1 A R(t)  > 0 i A4,(t,p’ R ( t ) l  + l ) ,  otherwise M ( t ,  p’)  = 

The described step is denoted by the notation 
M [ R ) M ’ .  0 

A part,icular case of the previous definit.ion corre- 
sponds to the case R = 0, reflecting the passage of 
time on the execution of pending transitions. 

From this definition it is deduced that ,  as happens 
in ordinary nets, if a multiset of transitions R is en- 
abled a t  an instant p, then it is also enabled a t  any 
later instant, at least as far as no new transition will 
be fired, because the effect of passage of time can only 
be positive, in the sense that  the current marking can 
only gain new tokens, each time the execution of a 
pending transition terminates. 

The previous definition allows us to  associate to 
TPN’s a (general) step semantics. We also will con- 
sider two other more restrictive semantics. 

Definition 4 (Timed Step Sequences) 
Let, N = (PI T ,  F, W ,  6) be a TPN and MO a marking 
for it: we say that U = Mo[Bo) . . . hln-l[B,,-l)Mn, IS 
a finite tinted step sequence of ( N ,  MO) iff 
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1. V i  E 0, .  . . ,n-1 : B, is a inultiset of transitions 

2. V i  E { 1 , 2 - .  . . , n )  : A4i-l[B;-l)A4i, where M;-1 

Note that from the initial ma.rking M O ,  the durat.ion 
of the sequence, and the non-empty steps Bi along 
it, with their firing times, we can construct the entire 
corresponding step sequence. This will be denoted 
by M[a("))M,,  where U = RjP1). . . dPr), with p! < 
/3? < . . . < p,., and each R, is a non-empty multiset 
of transitions in T .  

We denote by P ( N , M o )  the set of timed step se- 
quences, defining the step semantics of the net N .  

P ( N ,  M O )  = 

in T [which can b e empty) 

and Mi are markings of N .  

{ U I U  is a finite timed step sequence 
for N from MO} 

cl 

fined by restricting the firing rule in adequate ways: 
Definition 5 (Restrictive Firing Rules) 
Let N = (P? T ,  F,  IV, 5) be a TPN and M = ( M I ,  M ? )  
the marking of it a t  some instant p E IN. 

0 We say that  a niultiset of transitions R is enabled 
with,out over1appin.g of executions of the same 
transition (wo-enabled) a t  the instant p iff it  is 
enabled without restrictions, and Vt E T we have: 

The other two more restrictive semantics are de- 

1. If 3y E IN, M z ( t , ~ )  > 0 then R(t)  = 0 

0 We sa.y t,ha,t a. multiset, of transitions R i s  en- 
abled withoui the siniu1tan.eou.s firing of sezieral 
instances of the same transition (wsf-enabled) at  
the instant p iff it is enabled without restrictions, 
and Vt E T we have R(t) 5 1. 

2. R(t)  5 1 

0 

Definition 6 (Restrictive Timed Step Sequences and 
Semantics) Let N = ( P , T ,  F ,  W,6) be a TPN 
and MO a marking for it; we say that U = 
MO[&). . . Mn-l[B,-I)Mn, is a wo-finite (resp. wsf- 
finite) tim.ed step sequence of ( N ,  M O )  iff it  is an ordi- 
nary timed step sequence, and all the steps along it are 
wo-enabled (resp. usf-enabled) at the correspondin 
markings. We denote by S ( N ,  MO) (resp. D ( N ,  MO)? 
the set of wo-finite (resp. wsf-finite) timed step se- 
quen.ces of N from M O .  0 

Proposition 1 Timed Petri Nets such that all their 
transitions have a duration of one unit of time are 
(na.turally) e q u i d e n t ,  under the timed step sequence 
semantics to  the associated ordinary net with its (or- 
dinary) step semantics. 0 

3 The Reachability Problem and other 
related problems for Timed Petri 
Nets 

3.1 The Reachability Problem 
Besides the usual notion of reachability we also will 

define the strict reachability, which has as goal both a 
marking and the time at which we want to get it. 

Definition 7 (Reachability Problems for TPN's) 
Let N be a. TPN, M a marking for it and /3 E IN. We 
say that M is reachable (resp. strictly reachable at 
t.he instant p) in N ,  which will be denoted by M E 
[MO)? (resp. M E [Mo)p)  iff there exists a finite step 
sequence o such  that  Mo[a)M (resp. hfo[a'P))M).  0 

Theorem 1 (Decidability of the Reachability Prob- 
lem for TPN's) Let N = (P ,  T ,  F, W ,  M O )  be a TPN 
and M a marking for i t .  We can decide if M E [MO) . 
Proof: We must distinguish two cases: 

1. If M is stable, then M is reachable in N with 
regard to the timed step semantics iff it is reach- 
able in the ordinary net associated to  N ,  which 
is obtained by ignoring the durations of the tran- 
sitions in it. This is because we can always fire 
the transitions more slowly, getting an equivalent 
sequence without overlappings. 

2. If M is not stable, we can consider the stable 
marking M' obtained from the marking M by 
adding to it the tokens substracted by the firings 
of t,he transitions which are in execution in M .  
Then if M is reachable, M' will be too, because 
if we take the step sequence leading us to  M ,  and 
we avoid the execution of the transitions in exe- 
cution in M ,  we obtain a st,ep sequence leading us 
t,o Ad'. But it is clear that in M' we can fire (even 
together) all t.hose transitions, and in pa.rticular 
we can fire them in the adequate way to  reach M .  
Thus if M' is reachable, hil will be t,oo. 

0 

When the given Timed Petri Net does not contain 
any autonomous transition, that is, when there is no 
transition without preconditions, the strict reachabil- 
ity problem is trivially decidable, as we can (finitely) 
enumerate the reachable markings a t  the instant p, 
because a t  any instant we can only fire a finite n u m  
ber of multisets of transitions. 

Theorem 2 (Decidability of the Strict Reachabil- 
ity Problem for TPN's without autonomous transi- 
tions) Let N = (P ,  T ,  F, W,  M O )  be a. TPN without au- 
tonomous transitions, M a marking for i t ,  and p E IN . 
We can decide if M E [ M o ) ~ .  0 

Later we will prove, using the codification by Ordi- 
nary Petri Nets, that the Strict Reachability Problem 
is also decidable for TPN's with aut>onomous h n s i -  
tions. 
3.2 Other related problems 

The following problems can be posed on Timed 
Petri Nets, and can be solved, and thus be proved 
as decidable, by means of the codification that we will 
present in Section 4. 

Definition 8 Let N be a TPN, s E P and I C ,  P E IN. 
i )  We say that N is s, k-linearly unbounded iff there 
exists some y 2 k ,  and some marking M such that 
M E [ M o ) ~  and M ( s )  1 y. 
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ii) We say that N is uniformly s-linearly unbounded iff 
for all M E [MO) there exists some y E IN and some 
marking M‘ E [M)y such that M’(s) 2 y. 
iii) We say that 1 is P-live iff for any reachable mark- 
ing M there exists a marking M’ E M)p enabling 
the transition 1. We say that N is d-live iff all its 
transitions are p-live. 
iv) We say that a marking M of N is dead iff there 
is no transition enabled at M .  We say that, N can. 0- 
deadlock iff there is some dead marking M’ E [ M o ) ~ .  
0 

We could also extend the usual concepts of liveness 
and deadlock freeness to TPN’s in an straightforward 
way. These properties can be proved to be decidable 
in an easy way, by repeating the reasoning followed in 
our previous proof of decidability of the Reachability 
Problem for TPN’s. 

4 Simulation of TPN’s with Ordinary 
Petri Nets 

To obtain this siniulation we are going to split the 
transitions of t,he timed net into pieces of duration 1; 
and then to  apply prop.1. 

The construction is presented in a gradual way. 
First the wo-finite timed step sequence semantics is 
considered, getting a simulation which codifies the w e  
finite timed step sequences of the original net by the 
occurrence sequences of the constructed net. In a sec- 
ond step, the construction is extended to  cover the 
wsf-finite timed step sequence semantics; and finally, 
the general firing rule is also studied. 

In this construction we do not represent the passage 
of time by means of an special transition; instead we 
have an implicit clock, represented by the number of 
tokens over a distinguished place. Each token added 
to this place represents the passage of one unit of time 
(that is to say the execution of one step) in  the original 
Timed Net. 

We begin by introducing a definition borrowed from 
[8], which allows us to model any finite state automa- 
ton by means of an Ordinary Petri Net. 

Definition 9 (Petri Net modelling a Finite State Au- 
tomaton) Let A = (Q’, E’, e’, 6’, I?’, qo)  be a finite 
state automaton, where 

Q’ : 
C’ : Input alphabet 
0’ : Output alphabet 
6’ : 
r’ : 
qo : 

Finite set, of states 

State transition function :SI : Q‘ x C’ - Q’ 
Output function : r’ : Q’ x C’ - 0’ 
Initial state, qo E Q’ 

verifying that Q‘, E‘ and 0‘ are disjoint each other. 
Then we define the Ordinary Petri Net N(d) = 
( P ,  T ,  F, W ,  M O )  modelling the behaviour of d as fol- 
lows: 

P = Q’ U C’ U 0’ 
T = { ( q ,  a)lq E Q’ A U E E’} 
F = { ( q , t ) l q  E Q‘ A t = (q,a) E T)U 

{(a,t)(a E C’ A t = (q ,  U )  E T }  U 
{ ( t ,  q01d = b’ (q,  U >  E Q’ A t = (q ,  4 E T )  U 

1 if p = qo 
0 otherwise 

0 \ 

4.1 Case 1: wo-finite timed step sequence 
semantics 

The construction is based on a finite state automa- 
ton controlling the system evolution. 

Definition 10 (Non-Timed Petri Net associated to 
a TPN) Let N = (P ,T ,F ,  W,6 ,Mo)  be a TPN. 
The Non-Timed Petri Net  associated to  N is the net 
N“ = (P“. T”. F”, W“, M:) obtained by applying the 
following construction. 

First we define the automaton A = 
(Q‘, E’, e’, 6’, r‘, q o )  that controls the evolution of N , 
as follows: 
Q’ = {(qi, . . . , qn) E IN” In = IT1 A O 5 q j  5 6 ( t j  ) - 1) 
To = (0,. . . IO) 
E’ = { ( A ,  in)lA E ’P(T)} 
0’ = { ( o u t , A ) I A  E P ( T ) )  
5‘ : Q‘ x C’ - Q’ , I“ : Q’ x C’ - e’, defined by 
(i) 5‘ (q ,  ( A ,  i n ) )  is defined iff W j  E A ,  q j  = 0. 

In such a case # ( q ,  ( A ,  i n ) )  = q’, where: 

where I represents the corrected substraction, de- 
fined by x 2 y = Mux{O, x - y} 
( i i ) I ” ( q , ( A , i n ) )  = ( o u t , C ) ,  where 

C = { ( t j  E TJq’ = b(q,  ( A ,  in)) A ( (q j  > OA 
q j  = 0) V ( q j  = 0 A ti E A A b ( t j )  = 1))) 

The states of this automaton represent the tran- 
sitions in execution in the markings of the original 
Timed Net. Each component of a state tells us if there 
is some executing instance of each transition, and in 
such a case the time left till the conclusion of its exe- 
cution. In particular, the initial state corresponds to 
any stable marking. The inputs of the automaton rep- 
resent the steps to  be executed at  each moment, while 
the outputs indicate the sets of transitions terminat- 
ing at  each inst,ant. In particular, the empty set in 
C’ corresponds to the passage of time, that is to say 
to empty st,eps. Finally functions 6’ and f’’ codify the 
firing rule of the original Timed Net. 

Let N ( A )  = (P‘,T’, F’, W’,MA) be now the Non- 
Timed Petri Net modellin the automaton that we 
have just defined. We degne the Non-Timed Petri 
Net N” = (P”, T”, F”, W”, M{) representing (under 
the current restriction) the Timed Petri Net in the 
following way: 
P’’ = P U P’ U {clock} 
TI’ = T’ 
F” = F r  U F g ,  where: 

= {f’ E F’lf’ = (q’, t’) v f’ = (t ’, q’),  
where q‘ E Q’, t’ E T’} 

F [ = { ( P , t ’ ) ( p E  P A t ’  ET’ A t ’ =  ( q ‘ , ( A , a n ) ) A  
t E A A t E p’ }  U { ( t ‘ , p ) l p  E P A t’ E T’A 
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( t ’ , (ou i ,A ) )  E F’ A p E t o  A t E A } U  
{ ( t ’ ,  clock)1t’ E T’} 
( 1 if = ( t ’ ,  clock) v f E Fi’ 

.- ’ I t g a W ( t , p )  i f f  = ( t ’ , p )  E Fi’, where 
TA = { t  E Alp E i’} 
with (t’, ( o u t ,  A ) )  E F‘ 

if  p corresponds to the initial 
state of the automaton 

0 if p = clock 
1 

M o b )  if P E p 
0 otherwise 

M ( y ( p )  = 

0 

Definition 11 Let N be a TPN and N” the asso- 
ciated Non-Timed Petri Net. We denote by M the 
set of markings of N ,  and by M’ the set of mark- 
ings of NI’. For any marking M = ( M I ,  M2) in M 
let S ( M )  = ( q l , .  . . , q n )  be the associated state in Q’, 
which is defined as follows: 

0 if $7 such that M z ( t j , y )  > 0 
q~ = { y if 37 such that  M 2 ( t j , y )  > 0 

Finally, we define the markang correspondence func- 
iron (P; : M - M“ associated to  N for an instant 
a ,  in the following way: 

if v = clock 

Theorem 3 Lrt N = (P, 7’, F, I&’, I ; ,  MO) be a TPN 
and N” = (P”> T”, F”, W’”, A4:) the associated Non- 
Timed Net. Then for any t,wo markings of N ,  M I ,  Ad,, 
and for any set of transitions R T we have: 

M l [ R ) M 2  iff (PPN(Ml)[ (S(Md,  (R ,  2.1) )(PPN+’(K) 

Proof: 
(VP E IN) 

It is an immediate application of Def. 3.  0 

Definition 12 Let N = (P ,T ,F ,  “ ,&,MO) be a TPN 
and N” = (P”, T”, F”, W”, M”) the associated Non- 
Timed Pet,ri Net according to  t i e  wo-finite timed step 
sequence semantics. The function relating both se- 
mantics, $ : S ( N , M o )  - L”(N”, M:), is defined 
for each (T = M o [ B o ) .  . . M n - l [ B n - l ) M n  E S ( N ,  M O )  
bY 

$ ( U )  = P%(.Wl)tbPfy(Md~ ’ .  L ( P ; ( W d  
where t i  = ( S ( M j ) , ( B j , i n ) ) ,  for j = 0 , .  . . , n - 1 .  0 

Corollary 1 Let N = ( P , T ,  F ,  W ,  6, M O )  be a. TPN, 
N” the associated Non-Timed Net according to  the 
wo-finite timed step sequence semantics and (T = 

, with Bj E T,  Bj # 0 ,  Pj E IN, V j  E 
{ 1,. . . , r }  and PI < . . . < P,. Then: 

Mo[d”)) iCI ,  if and only if & ( M o ) [ $ ( ( T ) ) ~ ~ ( ( ~ )  0 

B1(P1) . . .  B$P?) 

Next, using this restricted semantics we study the 
decida.bility of the properties that  we have introduced 
in  section 3.  Firstly, since we cannot have overlapped 
executions of each transition, the computations tree 
is finitary, and thus the strict reachability problem, 
the P-liveness problem, and the P-deadlock freeness 
problem, are trivially decidable, just by exploring that 
tree up to  depth p. 

Also, s, k-linear unboundness and uniform s-linear 
unboundness properties can be decided using the given 
siniul a t  ion. 

Proposition 2 Let. N = ( P ,  T ,  F, W ,  6, M O )  be a 
Timed Petri Net, and N’ = (P’ ,T’ ,F‘ ,W’ ,M&) the 
associated Ordinary Petri Net, following Def. 10. We 
have: 
i) N is s, k-linearly unbounded iff we have some M’ E 
[MA) with M’(s)  2 M‘(c1ock) 2 k. 
ii) N is uniformly s-linearly unbounded iff for all M’ E 
[hlA) there exists some A?’’ E [M’) with M”(s)  
M y  clock). 
Proof: Immediate consequences of Cor. 1. 0 

Corollary 2 The s, k-linear unboundness property, 
and the uniform s-linear unboundness property of 
Timed Petri Nets with their wo-finite timed step se- 
quence semantics, are both decidable. 
Proof: As concerns t.he first, propertmy, we can decide 
the property of Ordinary Petri Nets to which we have 
reduce it,  by adding to  the net a new transition firable 
when time k has ellapsed, and whose effect is the re- 
moval of one token both from s and clock. Then we 
have that N’ has the desired property iff a marking 
with no tokens in the place clock is reachable. 

For the second property, we add to N’ the same 
t,ransition as i n  t.he former case, and we have that it 
has the desired property iff the set of markings wit,h 
no tokens in the place clock is a home space of the net, 
property that lias been proved t,o be decidable in [2,3]. 
0 

4.2 Case 2: wsf-finite timed step seman- 
tics 

Now our aim is to  generalize the construction pre- 
sented in the previous section, to  wsf-finite timed step 
semantics. 

The necessary modifications are not too deep, be- 
cause although we can have several instances of the 
same transition executing simultaneously, we cannot 
have two such executions beginning at the same time. 
Thus the differences between the previous construc- 
t,ion and t,he current one will be based on t,he sub- 
stitution of tuples indicating if there is some pending 
execution of each transition, by sets of pairs ( t , n ) ,  
whose elements indicate that there is some pending 
execution o f t  that, will tern1inat.e aft.er time n . 

Definition 13 (Non-Timed Petri Net associated to  a 
TPN) Let N = ( P ,  T ,  F, W,6, MO) be a TPN.  We de- 
fine the automaton A controlling the system evolution 
corresponding to the wsf-finite timed step sequence se- 
mantics of N as follows: 
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A = (Q’, E’, 0’, 6’, I?’, q o )  
where: 
Q’ = P({(t ,12)(t  E T A E { I , .  . . , 6 ( t )  - 1))) 
qo = 0 
C’ = { ( A ,  i n ) l A  E P ( T ) }  
0’ = { ( o u t , A ) I A  E P ( T ) }  
6’ : Q’ x C’ - Q’ , I” : Q’ x C’ - 0’, defined by 
( i ) b ’ ( q ,  A , i n )  = { ( t , n ) l n ? l  A ( t , n + l ) E q } U  

{ ( t 1 6 [ t )  - l]lt E A A 6 ( t )  > 1) 
(ii) r’ q ,  ( A ,  in)) = { t  E ~ l ( t ,  1) E q v (t E A A 

6 ( t  \ = 1)) 
Again, the desired Non-Timed Petri Net is ob- 

tained by applying first the construction in Def.9 to  
the automaton just defined, and then constructing the 
corresponding net N” exactly as in Def.lO. 13 

The algorit,lims to decide the properties in Sect,ion 
3 are analogous to  the corresponding ones for the case 
of wo-finite step sequence semantics. In particular, the 
coinputations tree is still finitary, and thus most (the 
same that in the former case) of the properties can be 
decided just by exploring it up to  the given depth. 

4.3 General construction 
In this section we will study TPN’s with their un- 

restricted step semantics. In this case the simulat,ion 
cannot, follow the same procedure as in the preceding 
cases, since i n  general we would obtain a net having 
an infinite number of places, if doing so. Thus to  de- 
velop the construction we will follow a rather different 
idea. The first step will be to  consider Non-Timed 
Nets, with t>heir step semantics, showing that  this se- 
” A s  can be simulated by the occurrence sequence 
semantics of an associated Non-Timed Petri Net. 

Definit ion 14 Let N = ( P ,  T ,  F ,  W,  M O )  be a Non- 
Timed Petri Net, A4 a marking for i t ,  p, k E IN and 
s E P .  
i) We say that M is reachable in N in P steps,  which 
will be denoted by M E [ M o ) ~  , iff there exists a se- 
quence U of non-empty steps of length ,8 such that 
M ~ [ u ) M .  Sometimes we will also accept empty steps, 
which is of course equivalent to allow sequences (of 
non-empty steps) of length less than or equal to the 
given number of steps ,B. The corresponding reacha- 
bility relation will be denoted by writing M E [MO); . 
ii) We say that N is s ,k- l inear ly  unbounded i f f  there 
exists some y 2 k ,  and some marking M such that 
M E [ M o ) ~  and M ( s )  2 y. 
i i i )  We say that N is unifornzly s-linearly unbounded 
i f f  for all A4 E [M”) there exists some 3; E IN and some 
marking AY’ E [M), such that A I ’ ( s )  2 y. 
iv) We say t,liat, t E T is P-l ive  iff for any reachable 
marking M there exists another one M’ such that 
M’ E [M)p. enabling t .  We say that N is P-l ive  iff 
all its transitions are p-live. 
v) We say that  a marking M of N is dead iff there is 
n o  transition enabled a t  M .  We say that N can p- 
deadlock iff there is some dead marking M’ E [Mo)p.  
0 

To prove the decidability of these problems, we will 
construct for each net, another one that simulates (tak- 
ing into account the length of sequences) the step se- 
mantics of the first one, by means of the ordinary oc- 
currence sequence semantics of the constructed net. 

Definit ion 15 (Construction 1) 
Let N = ( P ,  T ,  F, W ,  M O )  be a Non-Timed Petri Net. 
We define the following sets of (new) places and tran- 
sitions: 

P = { p i p  E P }  
Tp‘ = { t ’ l p  E P )  
Tp” = { t ! lp  E P }  

Then we define the net N’ associated t o  N ,  by 
N’ = (P’ ,T ‘ ,  F’, W’, MA), where 

P’ = P U P U { f s t e p ,  C s t e p ,  c lock,  P s }  
T’ = T U Tp‘ U Tp” U { n s t e p ,  t ’ ,  t 2 ,  r )  
F’ = { ( t ) ~ ) ,    ti,^), ( t i lp) ,  ( F J ~ ) ,  (pit;), ( f s tepr tk) ,  

(Cs tep , t2) ,  ( t i , ~ s t e p > l ( t i ~ )  E F }  U { ( f s t e p r t ) ,  

{ ( C s t e p l  7 l s t e p ) r  (nstep,  f s t e p ) }  U {(tb, clock) ,  

{ ( t lvcstep);  (t2, C s t e p ) ,  (Csteprt2), ( f s t e p r t l ) ,  
( P s , t l ) ,  (2 1 clock) ,  (PSlt2), ( r , c l o c k ) }  

( t ,  fstzpPlt E U { ( P , t ) l ( P ,  t )  E F )  U 

(tb,Cstep)lP E P }  U { ( t , p s ) I t  E T A t* = @}U 

W ( t , P )  if f = ( t , P ) ,  P E  p Y (P,  t )  if f = ( P ,  t )  E F 
otherwise 

if P = f s t e p  
otherwise 

0 

The construction is illustrated by figure 1. 

Definition 16 Let N = ( P , T ,  F , W , M o )  be a Non- 
Timed Petri Net and N’ = (P’ ,T ’ ,  F‘, W’, MA) the 
associated net according to  the previous const.ruction. 
For each p E IN we define the inarkzng correspondence 
fiinctaon ppN : M - M’ as follows: 

otherwise 

where M and M’ a.re the sets of markings of N and 
N’ respectively. 0 

Definit ion 17 (Multiset associated t,o an occurrence 
sequence) Let N be an ordinary Petri Net and U an 
occurrence sequence of it. We define the multiset as- 
sociated to  U B(u)  : T - IN as follows: 

B ( u ) ( ~ )  = B(s) ( t )  + 1 if U = I s) o t  
if U =  ) 

if U = (s) o t’ , t’ # t (“ B(s ) ( t )  
0 

n i  
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Figure 1: Construct,ion 1 

Theorem 4 Let, N = ( P ,  T ,  F, W,Mo) be an Otdi- 
nary Petri Net and NI the associated net according 
to Def.15. Then, given two markings of N I  M ,  M1, 
and iven a multiset B of transitions of T ,  we have 
M [ B f M 1  if and only if there exists an occurrence se- 
quence U in N' such that: 

2. B(u) ( t )  = B( t )  Vt  E T 
Proof: Let us suppose that M [ B ) M l .  Then, if B is 
empty it is sufficient to take as U the transition r in 
NI.  If B is not empty, then since we can fire together 
in N all its elements from the marking M ,  then in 
N' we can fire them in a row in any order, from the 
marking p$(M). After that we distinguish two cases, 
depending on if there is some transit>ion in B ,  t .  with 
t' # 8. If there is some such transition, we take any 
of them 1, selecling any of its output places s, and 
firing t,he transition t i .  Next, we fire as many times as 
possible all the transitions in { l i l p  E P )  U { t 2 } ,  until 
all the places in { p l p  E P)U{p , )  are empty. Finally we 
fire the transition nstep to recover the token over f s t e  , 
which allows the firing of a new bag of transitions. f f  
there is no transition t in B with t o  # 0 we first fire 
t' to add a new token to the clock, and after t' until 
p 3  becomes empty. 

For the converse, we have that either U is r ,  and 
then it corresponds to an empty step in N ,  or U = 
tit?. . .t.tA,t& . . . t2  nStep,  with s > 0. Since the fir- 
ing of transitions from T in N' remove from their pre- 
conditions the same nuniber of tokens that the corre- 
sponding firings in N ,  but it puts no tokens over tlie 
original places in P ,  but over the associated ones in P ,  
then it is clear that we can fire in N at M the multiset 
of transitions B ( t l t 2 . .  . t 5 ) ,  getting some marking M2. 
But,, by hypothesis after firing U we get some mark- 
ing &,.+'(MI), and this implies that the transitions 
in { t b l }  U { t i ,  i j  = 2 , .  . . , r }  exactly correspond to the 
displacement to the prigind places in P of the tokens 
over the places in P ,  generated by the firing of the 
transitions in t1t2 . . .  t,. As a consequence M2 must 
be equal to M I ,  which concludes the proof. 0 

F P  

A bit surprisingly, this result ca.nnot be generalized 
t,o sequences of steps. This is due to the fact that 

the corresponding first condition for the desired oc- 
currence sequence U , would be 

PpN(M>[4&++"(Ml), VP E IN 
where n is the length of the given step sequence. The 
problem is that nothing is said about the intermediate 
markings, so that it is perfectly possible to increase the 
number of tokens on the clock pla.ce without firing any 
transition from the original net. This is not only due 
t,o the existence of the transition r .  Even if we remove 
it the problem remains, because we are not obli ed to 
return all the tokens over the places in { p i p  E Pf  , be- 
fore t,he beginning of the next cycle of a computation 
of N' .  But in such a case, this next, cycle can begin 
wit.1~ the execution of a tb transition, and so a new to- 
ken would be added to the place clock without having 
executed any new t transition simulating t,hose in N .  

This implies that in the net N' (even with the re- 
moval of the transition r )  the firing of transitions in T 
can occur more slowly than in NI. To be exact, if we 
have in N' without r that &(M>[u)&"(M1),  then 
we have in N , M1 E [MO),< . But the converse would 
not be true without the introduction of the transition 
r that allows us to leave the time pass whenever we 
desire to do it. That  is why we introduced it,  arriv- 
ing at  the following theorem, which needs a previous 
definition. 

Definition 18 (Step sequence of N corresponding 
to an occurrence sequence of N ' )  Let N = (P ,  T ,  
F ,  W ,  M O )  be an Ordinary Petri Net and IV' the asso- 
ciated net following Def.15. If for two markings of N , 
M a.nd M' we have (P; (M)[U)&"(MI) ,  where U = 
a1 . . .us is an occurrence sequence in NI, we define 

1. The tic subsequence of U ,  t i c (a)  = uil . . ' U ? ,  , as 
that constituted by the transitions along it in the 
set ( $ 1 ~  E P }  U {tl, r }  

2. The step guided decomposition of u is that defined 
by U = U' o . . . o U" o U"+' where for each j E 
{ 1 , .  . . , TI }  we have uj = ~ i , - ~ + 1  . . 'ai, ~ taking 
io = 0, and un+' = ui,+l . . .us . 

3.  The step sequence of N (possibly conta.ining 
empty steps) simulated by U is that defined by 
BS(a)  = B(U1) .  . ' B(u") 

0 

Theorem 5 Let N = (P, T ,  F, W,  M O )  be an Ordi- 
nary Petri Net, N' the net associated to  it following 
Def. 15, and n E IN. If for two markings of N , M and 
M' we have ( p $ ( M ) [ u ) ( p p " ( M ~ ) ,  then in N we have 

Proof: (sketch) As we said before, it is possible 
th3t the displacement of the tokens on the places in 
{Plp  E P }  to the corresponding original places, will 
not be done in the same "cycle" in  which they were 
generated, but later on. But it is easy to check that 
all these displacements can be moved forward to the 

M [ B S ( 4 ) , < M  . 

160 



corresponding cycles that generated them, and then 
we can apply Th .  4, to conclude the proof. 0 

Corollary 3 Let N = (P, T ,  F, W,  MO)  be an Ordi- 
nary Petri Net, M a marking of i t ,  s E P ,  and p E IN . 

1. We can decide the Strict Reachability Problem 
when we allow empty steps. 

2. We can decide the s, k-linear unboundness prop- 
erty and the uniform s-linear unboundness prop- 
erty when we allow empty steps. 

0 

Theorem 6 Let N = ( P ,  T ,  F, W ,  6, MO be an Ordi- 

p-1 ive . 

Proof: We consider the net N’ associated to N by 
applying Def. 15. Then let t E T; the P-liveness o f t  in 
N can be decided by adequating the process followed 
in [2] to prove the decidability of (usual) liveness for 
Ordinary Petri Nets. 

In that paper it is shown that for any net, N ,  we 
can obtain a finite set of reachable markings of Ai 
{ M A ,  . . . , M L }  verifying that for any reachable mark- 
ing M’ t,here is some 1: E { 1,. . . , b }  such that M’ cov- 
ers M A  (which means V p  E P M ‘ ( p )  > M B ( p )  and is 
denoted by M’ > M i  ). 

We apply this result to  our net Ni;, getting the set 
{ M A , .  . . , M L } .  Then, we consider the marking M t  
associated to t in N;3, defined by: M ‘ ( p )  = W’(p,t), 

We have to test, if for all i E { 1, . . . , b }  there is some 
M” E [ M k )  such that M”(clock) = M;(clock)+pand 
M t  2 M“. 

For we define a net N’B = (P’, T’, F”, W”, M’{’i) 
associated to N ,  which is obtained from N‘ by revers- 
zng time, which means to reverse all the arrows in F‘ 
reaching t,he place clock, initializing this place with 
P tokens, and the rest of the places wi th  their num- 
ber of tokens in  M B .  Then we test. if there is some 
M” E [M’t’ i )  such that M‘ 2 M”. This can be done 
by studying the coverability tree of N’; .  

If any of these tests fails, then t is not P-live in the 
original net N .  Otherwise, it is, because for any reach- 
able marking M I  in N there is some i E { 1,. , . , b }  such 
that M i  > M I .  Then, we have some reachable niark- 
ing M” from this marking M i  such that M ” ( p )  > 
M ‘ ( p ) ,  for all p E P and M”(clock) = M ~ ( c l o c k )  +B.  
Now the occurrence sequence n such that M i [ a ) M ”  
can be fired from M I ,  as it covers Mh, leading us 
to a marking covering M”, and with /3 tokens more 
over the place clock than the original marking. Thus 
the corresponding marking can be reached in N by an 
step sequence of length p, and t will be enabled at  this 
marking, thus proving that the transition t is P-live in 
N .  0 

nary Petri Net, and ,O E IN. We can d ecide if N is 

v p  € P‘. 

Figure 2: Construction 2 

Note that we cannot solve, a t  least in a direct way, 
the ,&deadlock freeness problem with this first con- 
struction, because the transition r is autonomous, and 
thus t,he associated net cannot get deadlocked. 

Next we present, a second construction that elimi- 
nates the discussed problem, allowing us to simulate 
correctly the step semantics of a given net, without 
the allowance of empty steps. 

Definition 19 (Construction 2) 
Let N = P , T , F , W , M o )  be a Non-Timed Petri Net. 

transitions: 
We consi 6 er the following sets of (new) places and 

P = {PIP E P }  
T I  = {t‘lt E T }  
T S  = {tslt E T }  
Ti = {t,klp E P }  f o r  k = 1 , 2  

We define then the associated net N’ = 
(P’,T’, F’, W’, M;), as follows: 

P’ = P U P U { E }  U { P I ,  p s ,  clock, f i s )  
T’= TI U TS  U T’ U T2 U {nstep, t’, t 2 }  
F’ = { b S , t S ) ,  ( t S , P E ) ,  ( P I h  ( t ’ ,PS)l t  E TI U 

( P ,  l ; ) ,  ( t i ,  4, ( e , t ; ) ,  ct;, a,  ( t i ,  PI, ( t p  

( P S , t 2 ) %  ( p S , t 1 ) ,  ( t ,  n s t e p ) ,  ( n s t t p I ) }  

{(W> ( t S , P ) I ( t , p )  E F }  U {(Pslt:), ( P , t ; > ,  

(P,tS>l(P,t) E a U {(CPd? ( t S , P s >  It E T ,  
t* = 01 U ((Ps,tl), ( t W ,  (W), ( t 2 A  

Ip E P }  U {(t’, c1ock)lt E T )  U { ( p ,  t 1, 

W(P,t)  i f f  = ( P , f  v f = ( P , t “ ) ,  

i f f  = ( t ’ ,p)  v f = ( t s , ~ )  
t E T  

otherwise 

if p = pI 
otherwise 

0 

This construction is illustrated by figure 2. The key 
idea to understand it is that each step B of the original 
net N is simulated by the following sequence of firings: 
first an arbitrary transition t E B is selected, and the 
corresponding transition t’ fired, which updates the 
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clock to reflect the execution of the step. The role of 
places in { P I P  E P }  is analogous to that of the same 
set in construction 1. So, after the firing o f t ‘  it is 
only possible to  fire a sequence of transitions from T S  
t,hat can be executed together at, the same time that 
t.he fired t (in particular any sequence constituted by 
the transitions in B - { t ) )  until some ti transition will 
be executed, which disallows the firing of transitions 
TtS ,  and thus implies that the next execution of a 
transition associated to those of the original net will 
correspond to a new step. 

Observe that since time only passes when some 
transition from TI is executed, empty steps are not 
possible at  all. 

By means of this net we can simulate again the step 
semantics of N ,  obtaining the corresponding versions 
of theorems 4 and 5, thus concluding the following 
corollary. 

Corollary 4 We can decide the strict reachability 
problem, the s, k-linea,r unboundness property and the 
uniform s-1inea.r unboudness property. 0 

However, this second construction raises a new 
problem, which is the possible introduction of new 
deadlocks in the constructed net. As a consequence, 
liveness can be lost. The reason being that if t,he places 
in P are not completely empty before the firing of tran- 
sition n S t e p ,  then it is possible that there will not be 
in  the original places of the net enough tokens to fire 
any transition in T ,  thus becoming blocked. 

As a consequence 0-deadlock freeness and 0- 
liveness cannot be decided, at  least in a direct way, 
by using this simulation. Fortunately we have a third 
proposal, which has neither this problem, nor the one 
commented on in our first construction. 

Definition 20 (Construction 3) 
Let N = ( P ,  T ,  F ,  W ,  M O )  be an Ordinary Pet8ri Net, 
P ,  TI ,  T‘, Td, T: the sets int,roduced in Def. 19 for 
this net and N’ the net associat,ed to N according to 
that const,ruction. Now we consider a. new set., T; = 
{ t % l p  E P}> and we define the net  N” associaied i o  A: 
as follows: 

where: 
N” = (P’ ,  T’ U T: U { t 3 } ,  F’ U F,  W”, MA) 

= { ( p , t : ) ,  (p’lt:)J ( ‘ ;Jp’ )>  (t:7p)lP E 
{ ( P I  ! t 3 ) !  ( t 3 ?  P I )  ( P s  , t 3 ) }  

W(f)  if f E F’ 
otherwise 

The only essential difference with respect to the 
previous construction is t,he introduction of a new 
transition for each place of the original net t ; ,  to al- 
low us to empty the places p ,  when they have some 
token after a simulation of a step. It can be only done 
when p‘ is marked, that is, when there is no step in 
execution. 

Again, the corresponding versions of Th.  4 and Th.  
5 can be proved, which allows us to conclude the decid- 
ability of the 0-liveness and P-deadlock freeness prop- 
erties. 

Corollary 5 The 0-liveness property and the p- 
deadlock freeness property are both decidable. 
Proof: The demonstration of the first one follows the 
same idea as those of the same results using the for- 
mer constructions. The decidability of the P-deadlock 
freeness property can be solved by modifying the as- 
sociated Ordinary Petri Net, adding a transition life 
which will be enabled forever whenever the place clock 
has (at least) 0 tokens. That  is obtained by taking 

W ( c l o c k ,  lzfe) = 0 = W ( l i f e ,  c lock )  
Thus after time 0 we will have no deadlocks in the 

so modified net, and so it will have deadlocks iff t,he 
original net has @-deadlocks. 0 

4.4 Simulating Timed Petri Nets with 

The constmction that we make to codify Timed 
Petri Nets with their general semantics, is based on 
t,he splitting of each transition t in b ( t )  transitions, 
corresponding to each instant along the execution of 
1 .  Intuitively, in order that this codification will per- 
fectly simulate the behaviour of timed nets, it seems 
that the application of the maximum parallelism hy- 
pothesis to the transitions corresponding to (original) 
transitions in execution is required. However, as we 
will see later, although we ignore this (in general im- 
possible to be represented in the Ordinary Petri Net’s 
world) restriction, the executions of transitions that 
do not obey this hypothesis can be seen as starting a 
little later, thus fulfilling the hypothesis, and so the 
simulation is meaningful. 

their unrestricted semantics 

Definition 21 (Net associated to  a TPN) 
Let N = ( P ,  T ,  F ,  W ,  6 ,  M O )  be a TPN. For each t E T 
we will consider a set of (atomic) transitions Ct = 
{ t l ,  . . . , t6 ( t , ) .  Then we define the Ordinary  P e t r i  N e t  
associated t o  N ,  N’ = (P’,T’, F’, W ’ , M , $ ) ,  as follows: 

Definition 22 Let N = (P,  T, F, W,  6, M O )  be a TPN 
and N’ = (P’, T’, F’, W’, Mh) the associated Ordi- 
nary Petri Net. We define the mark ing  correspondence 
f u n c t i o n  V N  : M - M‘ as follows: 
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M l ( p )  if p’ = p E P 
c p N ( M ) ( p ’ )  1 ~ z ( t , i )  if p’ = pit), for 

1 5 i 5 6 ( t )  - 1 { 
0 

Definition 23 Let N = (PI T ,  F, W ,  6, M O )  be a TPN 
and N’ = (P’,T’,  F’, W’, MA) the associated net ob- 
tained according to  the previous construction. We de- 
fine the step corrfspondence functaon as follows: 

7 : iM x P(T) - P(T‘) 

where P(T) (resp. P(T’)) is the set of all the multisets 
in  T (resp. T’). 0 

Theorem 7 Let N = (P,T,F, W , 6 , M o )  be a TPN 
and N’ = (P’,T’, F‘, W’, Mh) the associated net ac- 
cording to  the construction in definition 21. Let 
M ,  M’ be two markings of N and B a multiset of 
T .  Then we have: 

M[B)M’ if and only if c p ~ ( M ) [ r ( M ,  B))cpiy(M’) 0 

Corollary 6 Let N = (PIT, F,  W,  6, MO) be a TPN 
and N” the net constructed over tjhe net associated 
to N ,  N ’ ,  by applying the construction of Def. 20. 
Then, M = ( M I ,  M z )  is a reachable marking in N at  
the instant /3 if and only if there exists a reachable 
marking M’ in N” such that: 

(1) M Y P )  = Ml(P) V p  E p 
( 2 )  M’(pz(‘’) = Ad2( t . i )  Vt  E T A  

(3) A4’( c lock )  = 13 
(4) M ’ ( p ’ )  = 0 otherwise 

V i  : 15 i 5 6 ( t )  - 1) 

Proof: The left to right implication is an immediate 
application of the equivalent theorems to  Th.4 and 
Th.5  for the third construction. Let us look at the 
converse. 

Let M‘ be a reachable marking in N“ verifying the 
conditions (1-4). For this marking there exists a mark- 
ing rCi in N’ such that cpL(A?) = M‘ . Then, from the 
equivalent theorem to Th.5 for the third construction 
we obtain that ~ is reachable in ,B steps. Besides, 
2 = c p ~ ( M )  . The step sequence in N’ allowing us to  
reach A? in N’ does not nec,essarily satisfy the max- 
imum parallelism hypot,liesis restrict.ed t,o the atomic 
t,ra.nsitions corresponding to the instants of transitions 
in execution. In consequence, we cannot a.pp1y Th.7 
step by step t,o conclude that M is reachable in P st,eps 
in N .  However, we can delay the activation tlimes 
of the components of each execution of any (original) 
transition not satisfying the defined maximum paral- 
lelism condition. To be exact, we see when the last 
component of each execution has been fired, and we 
take as firing t,iiiie for the original transition that time 
minus the duration of the t#ra.nsition plus one. Then 
we consider the firing in a row of the component,s of 
the transition from t,hat, instant, and so we obtain 

an equivalent step sequence satisfying this condition. 
Then we can apply Th.7 step by step, concluding that 
the marking M is reachable in ,O steps in N .  0 

Corollary 7 Let N = (P ,  T ,  F ,  W ,  6 ,  M O )  be a TPN,  
M a marking of i t ,  and ,O E I N .  Then the following 
properties are decidable: 

The strict reachability property. 

The s-linear unboundness pr0pert.y and the uni- 
form s-linear unboundness property. 

The P-deadlock property 

The ,O-liveness property. 

The first sentence is an immediate consequence of the 
previous corollary. The  other ones are obtained by 
considering that these properties are preserved by the 
codification to Ordinary Petri Nets with its step se- 
mantics, for which the decidability of these properties 
have been solved. 0 
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