The Community for Technology Leaders
Pervasive Computing and Communications Workshops, IEEE International Conference on (2012)
Lugano, Switzerland
Mar. 19, 2012 to Mar. 23, 2012
ISBN: 978-1-4673-0905-9
pp: 361-366
Gergely Kotyuk , Laboratory of Cryptography and Systems Security (CrySyS), Budapest University of Technology and Economics
Levente Buttyan , Laboratory of Cryptography and Systems Security (CrySyS), Budapest University of Technology and Economics
ABSTRACT
Online Social Networks have gained increased popularity in recent years. However, besides their many advantages, they also represent privacy risks for the users. In order to control access to their private information, users of OSNs are typically allowed to set the visibility of their profile attributes, but this may not be sufficient, because visible attributes, friendship relationships, and group memberships can be used to infer private information. In this paper, we propose a fully automated approach based on machine learning for inferring undisclosed attributes of OSN users. Our method can be used for both classification and regression tasks, and it makes large scale privacy attacks feasible. We also provide experimental results showing that our method achieves good performance in practice.
INDEX TERMS
CITATION

G. Kotyuk and L. Buttyan, "A machine learning based approach for predicting undisclosed attributes in social networks," 2012 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)(PERCOM WORKSHOPS), Lugano, 2012, pp. 361-366.
doi:10.1109/PerComW.2012.6197511
179 ms
(Ver 3.3 (11022016))