The Community for Technology Leaders
2016 IEEE International Conference on Pervasive Computing and Communications (PerCom) (2016)
Sydney, Australia
March 14, 2016 to March 19, 2016
ISBN: 978-1-4673-8778-1
pp: 1-9
Milan Jain , Indraprastha Institute of Information Technology Delhi
Amarjeet Singh , Indraprastha Institute of Information Technology Delhi
Vikas Chandan , IBM Research India
ABSTRACT
Residential buildings account for a significant proportion of overall energy consumption across the world. Decentralized room level Air Conditioners (ACs) are a commonplace in developing countries such as India, contributing a major share (34% in India) of the total residential energy consumption. Option to independently control each AC presents a prime opportunity for an energy saving system. Thus, we propose PACMAN to non-intrusively (using only the temperature information) predict AC energy consumption prior to usage and estimate energy consumption post-usage. We discuss various possible applications and use cases of such feedback for the occupants. To empirically validate the performance of PACMAN, we conducted an in-situ study across seven homes in Delhi (India). We collected around 2200 hours of usage data from the different ACs, room types, and thermostat temperatures. We achieved an average accuracy of 85.3% and 83.7% with the best accuracy of 97.0% and 93.3% for the estimation and prediction of AC energy consumption respectively, across all homes. Towards the end, we discuss various outlier scenarios, opening up multiple directions for further research in this domain.
INDEX TERMS
Energy consumption, Meteorology, Estimation, Temperature sensors, Temperature distribution, Thermostats, Switches
CITATION

M. Jain, A. Singh and V. Chandan, "Non-intrusive estimation and prediction of residential AC energy consumption," 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)(PERCOM), Sydney, Australia, 2016, pp. 1-9.
doi:10.1109/PERCOM.2016.7456509
82 ms
(Ver 3.3 (11022016))