2010 IEEE Workshop on Principles of Advanced and Distributed Simulation (2010)

Atlanta, GA

May 17, 2010 to May 19, 2010

ISBN: 978-1-4244-7292-5

pp: 1-8

Sina Meraji , Sch. of Comput. Sci., McGill Univ., Montreal, QC, Canada

Wei Zhang , Sch. of Comput. Sci., McGill Univ., Montreal, QC, Canada

Carl Tropper , Sch. of Comput. Sci., McGill Univ., Montreal, QC, Canada

ABSTRACT

In this paper, we present a dynamic load-balancing algorithm for optimistic gate level simulation making use of a machine learning approach. We first introduce two dynamic load-balancing algorithms oriented towards balancing the computational and communication load respectively in a Time Warp simulator. In addition, we utilize a multi-state Q-learning approach to create an algorithm which is a combination of the first two algorithms. The Q-learning algorithm determines the value of three important parameters- the number of processors which participate in the algorithm, the load which is exchanged during its execution and the type of load-balancing algorithm. We investigate the algorithm on gate level simulations of several open source VLSI circuits.

INDEX TERMS

multistate q-learning approach, dynamic load balancing, time warp, machine learning approach, open source VLSI circuits, optimistic gate level simulation

CITATION

C. Tropper, Wei Zhang and S. Meraji, "A Multi-State Q-Learning Approach for the Dynamic Load Balancing of Time Warp,"

*2010 IEEE Workshop on Principles of Advanced and Distributed Simulation(PADS)*, Atlanta, GA, 2010, pp. 1-8.

doi:10.1109/PADS.2010.5471661

CITATIONS