The Community for Technology Leaders
2015 International Conference on Parallel Architecture and Compilation (PACT) (2015)
San Francisco, CA, USA
Oct. 18, 2015 to Oct. 21, 2015
ISSN: 1089-795X
ISBN: 978-1-4673-9524-3
pp: 494-495
ABSTRACT
Nowadays, data centers consume about 2% of the worldwide energy production, originating more than 43 million tons of CO2 per year. Cloud providers need to implement an energy-efficient management of physical resources in order to meet the growing demand for their services and ensure minimal costs. From the application-framework viewpoint, Cloud workloads present additional restrictions as 24/7 availability, and SLA constraints among others. Also, workload variation impacts on the performance of two of the main strategies for energy-efficiency in Cloud data centers: Dynamic Voltage and Frequency Scaling (DVFS) and Consolidation. Our work proposes two contributions: 1) a DVFS policy that takes into account the trade-offs between energy consumption and performance degradation; 2) a novel consolidation algorithm that is aware of the frequency that would be necessary when allocating a Cloud workload in order to maintain QoS. Our results demonstrate that including DVFS awareness in workload management provides substantial energy savings of up to 39.14% for scenarios under dynamic workload conditions.
INDEX TERMS
Cloud computing, Optimization, Energy efficiency, Servers, Energy consumption, Heuristic algorithms, Quality of service
CITATION

P. Arroba, J. M. Moya, J. L. Ayala and R. Buyya, "DVFS-Aware Consolidation for Energy-Efficient Clouds," 2015 International Conference on Parallel Architecture and Compilation (PACT), San Francisco, CA, USA, 2016, pp. 494-495.
doi:10.1109/PACT.2015.59
181 ms
(Ver 3.3 (11022016))