The Community for Technology Leaders
Proceedings of the 22nd International Conference on Parallel Architectures and Compilation Techniques (2009)
Raleigh, North Carolina, USA
Sept. 12, 2009 to Sept. 16, 2009
ISSN: 1089-795X
ISBN: 978-0-7695-3771-9
pp: 91-100
In today's data centers, precisely controlling server power consumption is an essential way to avoid system failures caused by power capacity overload or overheating due to increasingly high server density. While various power control strategies have been recently proposed, existing solutions are not scalable to control the power consumption of an entire large-scale data center, because these solutions are designed only for a single server or a rack enclosure. In a modern data center, however, power control needs to be enforced at three levels: rack enclosure, power distribution unit, and the entire data center, due to the physical and contractual power limits at each level. This paper presents SHIP, a highly scalable hierarchical power control architecture for large-scale data centers. SHIP is designed based on well-established control theory for analytical assurance of control accuracy and system stability. Empirical results on a physical testbed show that our control solution can provide precise power control, as well as power differentiations for optimized system performance. In addition, our extensive simulation results based on a real trace file demonstrate the efficacy of our control solution in large-scale data centers composed of thousands of servers.
Data center, power capping, feedback control, power management, scalability
Tom W. Keller, Xiaorui Wang, Charles Lefurgy, Ming Chen, "SHIP: Scalable Hierarchical Power Control for Large-Scale Data Centers", Proceedings of the 22nd International Conference on Parallel Architectures and Compilation Techniques, vol. 00, no. , pp. 91-100, 2009, doi:10.1109/PACT.2009.34
82 ms
(Ver 3.3 (11022016))