The Community for Technology Leaders
Proceedings of the 22nd International Conference on Parallel Architectures and Compilation Techniques (1999)
Newport Beach, California
Oct. 12, 1999 to Oct. 16, 1999
ISSN: 1089-795X
ISBN: 0-7695-0425-6
pp: 264
Konstantinos Kyriakopoulos , University of Texas at San Antonio
Kleanthis Psarris , University of Texas at San Antonio
ABSTRACT
Data dependence analysis is a fundamental step in an optimizing compiler. The results of the analysis enable the compiler to identify code fragments that can be executed in parallel. A number of data dependence tests have been proposed in the literature. In each test there are different tradeoffs between accuracy and efficiency. In this paper we present an experimental evaluation of several data dependence tests, including the Banerjee test, the I-Test and the Omega test. We compare these tests in terms of accuracy and efficiency. We run various experiments using the Perfect Club Benchmarks and the scientific libraries Eispack, Linpack and Lapack. Several observations and conclusions are derived from the experimental results, which are displayed and analyzed in this paper.
INDEX TERMS
Data Dependence, Dependence Analysis, Automatic Parallelization, Compiler Optimization
CITATION
Konstantinos Kyriakopoulos, Kleanthis Psarris, "Data Dependence Testing in Practice", Proceedings of the 22nd International Conference on Parallel Architectures and Compilation Techniques, vol. 00, no. , pp. 264, 1999, doi:10.1109/PACT.1999.807571
107 ms
(Ver 3.3 (11022016))