Visualization Symposium, IEEE Pacific (2014)

Yokohama, Japan Japan

Mar. 4, 2014 to Mar. 7, 2014

pp: 277-280

Allen R. Sanderson , Sci. Comput. & Imaging Inst., Univ. of Utah, Salt Lake City, UT, USA

ABSTRACT

Lagrangian coherent structures are time-evolving surfaces that highlight areas in flow fields where neighboring advected particles diverge or converge. The detection and understanding of such structures is an important part of many applications such as in oceanography where there is a need to predict the dispersion of oil and other materials in the ocean. One of the most widely used tools for revealing Lagrangian coherent structures has been to calculate the finite-time Lyapunov exponents, whose maximal values appear as ridgelines to reveal Lagrangian coherent structures. In this paper we explore an alternative formulation of Lyapunov exponents for computing Lagrangian coherent structures.

INDEX TERMS

Euclidean distance, Rivers, Sea measurements, Atmospheric measurements, Particle measurements, Tides

CITATION

A. R. Sanderson, "An Alternative Formulation of Lyapunov Exponents for Computing Lagrangian Coherent Structures,"

*2014 IEEE Pacific Visualization Symposium (PacificVis)(PACIFICVIS)*, Yokohama, Japan, 2014, pp. 277-280.

doi:10.1109/PacificVis.2014.27

CITATIONS