The Community for Technology Leaders
Visualization Symposium, IEEE Pacific (2010)
Taipei Taiwan
Mar. 2, 2010 to Mar. 5, 2010
ISBN: 978-1-4244-6685-6
pp: 17-24
ABSTRACT
It is a difficult task to design transfer functions for noisy data. In traditional transfer-function spaces, data values of different materials overlap. In this paper we introduce a novel statistical transfer-function space which in the presence of noise, separates different materials in volume data sets. Our method adaptively estimates statistical properties, i.e. the mean value and the standard deviation, of the data values in the neighborhood of each sample point. These properties are used to define a transfer-function space which enables the distinction of different materials. Additionally, we present a novel approach for interacting with our new transfer-function space which enables the design of transfer functions based on statistical properties. Furthermore, we demonstrate that statistical information can be applied to enhance visual appearance in the rendering process. We compare the new method with 1D, 2D, and LH transfer functions to demonstrate its usefulness.
INDEX TERMS
Transfer functions, Space technology, Computer graphics, Data visualization, Noise measurement, White noise, Medical services, Algorithm design and analysis, Rendering (computer graphics), Statistics,shading, Transfer function, statistics, classification, noisy data
CITATION
"Volume visualization based on statistical transfer-function spaces", Visualization Symposium, IEEE Pacific, vol. 00, no. , pp. 17-24, 2010, doi:10.1109/PACIFICVIS.2010.5429615
95 ms
(Ver 3.3 (11022016))