The Community for Technology Leaders
2014 Sixth International Symposium on Parallel Architectures, Algorithms and Programming (PAAP) (2014)
Beijing, China
July 13, 2014 to July 15, 2014
ISSN: 2168-3034
ISBN: 978-1-4799-3844-5
pp: 203-208
ABSTRACT
Mining spatio-temporal data has recently gained great interest due to the integration of wireless communications and positioning technologies. Although clustering spatio-temporal data as a popular mining task has been well studied, the problem properly defining the distance between the objects to make the clustering results suit the application needs still remain largely unsolved. In this paper, for the purpose for trajectory data processing, we propose an improved trajectory segmentation algorithm and a new object distance metric that considers multiple dimensions on the characteristics of moving object's subtrajectories. Then, we use the new distance metric in a varient of the existing fuzzy clustering algorithm to improve the quality of clustering results. The experimental evaluation over real world trajectory data record with GPS demonstrates the efficiency and effectiveness of our approach.
INDEX TERMS
Trajectory, Clustering algorithms, Measurement, Data mining, Vectors, Uncertainty, Global Positioning System,FCM, spatio-temporal data mining, trajectory clustering, trajectory segmentation
CITATION
Yanjun Chen, Hong Shen, Hui Tian, "Clustering Subtrajectories of Moving Objects Based on a Distance Metric with Multi-dimensional Weights", 2014 Sixth International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), vol. 00, no. , pp. 203-208, 2014, doi:10.1109/PAAP.2014.59
94 ms
(Ver 3.3 (11022016))