The Community for Technology Leaders
RSS Icon
Subscribe
Taipei, Taiwan
May 18, 2009 to May 20, 2009
ISBN: 978-0-7695-3650-7
pp: 338-347
ABSTRACT
Mobile-enabled social networks applications are becoming increasingly popular. Most of the current social network applications have been designed for high-end mobile devices, and they rely upon features such as GPS, capabilities of the world wide web, and rich media support. However, a significant fraction of mobile user base, especially in the developing world, own low-end devices that are only capable of voice and short text messages (SMS). In this context, a natural question is whether one can design meaningful social network-based applications that can work well with these simple devices, and if so, what the real challenges are. Towards answering these questions, this paper presents a social network-based recommender system that has been explicitly designed to work even with devices that just support phone calls and SMS. Our design of the social network based recommender system incorporates three features that complement each other to derive highly targeted ads. First, we analyze information such as customer's address books to estimate the level of social affinity among various users. This social affinity information is used to identify the recommendations to be sent to an individual user. Second, we combine the social affinity information with the spatio-temporal context of users and historical responses of the user to further refine the set of recommendations and to decide when a recommendation would be sent. Third, social affinity computation and spatio-temporal contextual association are continuously tuned through user feedback. We outline the challenges in building such a system, and outline approaches to deal with such challenges.
CITATION
Lakshmish Ramaswamy, Deepak P., Ramana Polavarapu, Kutila Gunasekera, Dinesh Garg, Karthik Visweswariah, Shivkumar Kalyanaraman, "CAESAR: A Context-Aware, Social Recommender System for Low-End Mobile Devices", MDM, 2009, 2013 IEEE 14th International Conference on Mobile Data Management, 2013 IEEE 14th International Conference on Mobile Data Management 2009, pp. 338-347, doi:10.1109/MDM.2009.66
22 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool