
The Delta-t Transport Protocol: Features and Experience

Richard W. Watson

Lawrence Livermore National Laboratory
P.O. Box 808

Livermore, CA 94550

Abstrad
With the advent of new high performance

networks and distributed systems there is renewed
interest in transport protocol designs that can support
both request/response and stream styles of
communication. Delta-t is a transport protocol
designed to meet such goals. Delta-t's main
contribution is in the area of connection
management, where it achieves hazard free
connection management without explicit packet
exchanges. This paper reviews Delta-t's features,
connection management more generally, and outlines
some implementation lessons useful for high
performance networks.

1. introduction

At the Lawrence Livermore National Laboratory
(LLNL) we have developed an integrated network and
distributed operating system architecture that we call
the Livermore Integrated Network Computing
System (LINCS) [12, 261. LINCS was designed to
integrate a wide range of heterogeneous micro to
supercomputer systems. It has been implemented as
the native multiprocessing operating system on our
Cray XMP and YMP systems, called NLTSS [10,23,24,
261, and as a guest on various flavors of Unix, VMS
and other systems.

LINCS is a capability based, multitasking, message
passing, client /server architecture. Capabilities are
protected by servers against forgery through
encryption, and are just ordinary data kept in
application memory space and sent in messages.
LINCS defines a number of standard server supported
abstract object interfaces (e.g., file, process, directory,
clock, account, etc.), an interprocess communication
model, and a set of communication protocols from
the link to application levels [12, 21, 251. Many of the
protocols will be replaced by national or international
standards when appropriate ones are developed and
are vendor supported.

Early on in this project we recognized that we
needed a high performance transport protocol that

could efficiently support both the request/response
transaction style of communication needed for
client/server interactions and the stream style of
communication needed for terminal sessions and
bulk data transfer.

Our list of requirements was the following:

1. Minimum packet exchange for request/response
transactions.

2. High throughput bulk data transport and other
stream services.

3. Flow control without polling for reliable zero
window opening.

4. Error control of lost, damaged, duplicated, and
out-of-sequence packets.

5. Large and flexible name space for transport end
points.

6. Message boundary preservation.

7. Secure communications.

In 1977, when the project began, the only available
general purpose transport protocol was TCP 1131. TCP
was not widely supported by vendors at that time and
required excessive connection management packets to
exchange a request and response. It also failed to meet
other of the requirements above. Therefore, we de-
cided to reexamine the connection management
problem and meet our other requirements.

We did not want a special-purpose transport
protocol that made limiting assumptions about the
topology or error properties of the network or was
specially tailored just for the request-response style
communication [l, 201. We wanted a general-purpose
transport protocol that could meet all our needs in a
general network topology. From this effort the Delta-t
protocol emerged [ll, 211. Delta-t's design goal was to
allow complete requests or replies to be sent using two
packets in the usual case, one packet for the request or

399

reply and one for its Ack. No other packets should be
required for connection opening or closing. Because
an Ack can acknowledge more than one data packet,
bulk data transfer can be achieved using less than one
Ack per data packet, using delayed Acks.

Delta-t has had several implementations and has
been operational about seven years. The sections
below outline what we have learned from this work
useful in protocol design and implementation for
high performance networks. Delta-t's main contribu-
tion to high performance, or lightweight, protocol
design is in the area of connection management [18,
191. Delta-t's connection management mechanisms
can be used in both connection oriented link level and
transport protocols. We focus here on transport
protocol design. It is our observation that connection
management is still a troublesome area in transport
protocols because they often contain connection man-
agement hazards or do not clearly define the network
topology and error assumptions that would make
them safe. Even in high performance networks these
hazards must be considered.

Section 2 outlines the features of Delta-t. Section 3
reviews the main requirements and mechanisms of
connection management that must be dealt with or
used by any transport protocol. Section 4 outlines
other lessons we have learned.

2. Outli ne of De Ita-t's Featurea

The functionality of Delta-t is split into a
connectionless network level protocol and a transport
level protocol. The former handles those services
provided by datagram routing nodes (including
routing software in the ends) and the latter those
services provided just by the ends. Here we describe
them together as if Delta-t were a single protocol.
Delta-t can be implemented on other connectionless
network protocols such as DARPA's IP or ISOs CLNP.

Naming

Communication takes place between ports on
processes. A process consists of a memory address
space, a port address space, and one or more
lightweight threads of control, called tasks, that share
the memory address and port address spaces. Ports are
identified by 64 bit addresses unique over the network.
These addresses can be location independent generic
addresses, or location specific hierarchical physical
addresses. The former can be mapped through a
name server to the latter.

Security

All packets carry two security related fields, a four
bit protection label (unclassified, confidential, secret,

etc.) so that a mandatory security policy can be
enforced by all nodes of the network, and a 64 bit
random number, called a stream number described
below. Besides checking the protection label, routing
nodes check source addresses at the boundary between
different administrative or protection domains to
assure that they are legitimate in the source domain.
This check prevents masquerade by processes outside
the next domain to which the packet is to be routed.

The stream number, which is generated by the
application level, is in effect a communication stream
capability establishing the sender's right to
communicate the data or Ack packet. It is also used as
a transaction identifier for synchronizing requests
with their associated replies. A stream is a
unidirectional flow defined by the triple (destination
port, source port, stream number). Higher level
communication primitives allow send and receive
specifics, where all three members of the triple are
specified, or send and receive anys, where one or
more members of the triple can be any value. Stream
numbers and support for send and receive specifics
and anys have been very useful in designing flexible,
access controlled higher level communication
structures between two or more parties not initially
known to each other.

Data Units

Delta-t supports an alphabet visible at the transport
interface consisting of bits (0,l) and the symbols B, E,
W. Higher level protocols define how the latter are
used. The position in the stream of the B, E, and W
symbols is visible at the transport interface. Generally
B and E delimit the beginning and ending of some
high level unit such as a message or monolog [=I.
The W can be used by a sender to indicate a point of
advisory wakeup when it has sent enough
information for the receiver to process usefully. Bits
were chosen as the fundamental unit of error and
flow control rather than bytes because at the time
Delta-t was designed we had 36 and 60 bit machines as
well as machines that were byte oriented. The cost of
orienting Delta-t to bits has been low, specifically 3 bits
in sequence number and flow control window fields.

Flow Contro 1

Delta-t supports sliding window flow control for
the same reasons that sliding window flow control
was chosen for TCP [91. It also supports a rendezvous-
at-the-sender mechanism for reliably handling the
zero window opening hazard that results from
possible lost or out-of-sequence acknowledgements
[21]. In Delta-t when the receiver advertises a zero
window to the sender, or knows the sender is facing a
zero window, it will later send a reliable zero window
opening control packet. The rendezvous-at-sender

mechanism relieves the sender from polling when
facing a zero window, as it must do, for example, in
TCP [13]. When the sender sends an E or W symbol
both receiver and sender assume that the window, as
viewed by the sender, is zero because most
implementations will mark a buffer as complete
when either of these symbols arrive.

Our experience, like that of others, has been that
the interaction of flow control and buffer
management strategies is a troublesome area and a
cause of implementation performance problems, such
as generating extraneous packets [6, 7, 201. Therefore,
were we to start again we would want to examine
alternate flow control mechanisms such as rate-based
flow control appearing in newer protocols [2,4,51.

Assurance

Delta-t uses sequence numbers on bits and the B, E,
W symbols to protect against loss, duplication, and
out-of-sequence data. Damaged data is detected by an
optional checksum. Delta-t supports hazard free
connection management, without connection
management packet exchanges, in a network with an
arbitrary mesh topology and the possible errors listed
above. The term connection is used to mean that
time during which state information is maintained at
each communicating end. Connection opening refers
to reliably establishing this state and connection
closing refers to reliably and unambiguously
deallocating this state. Because we believe connection
management is a somewhat subtle area and needs to
be handled properly by newer high performance
protocols, we review this area in more detail in the
next sec tion.

Delta-t's connection model supports the view that
logically there are permanent error and flow
controlled connections between all possible streams,
each defined, as mentioned above, by the triple
(destination port, source port, stream number). When
a connection is in a default state, no state need be
retained. Delta-t's timer-based connection manage-
ment mechanism, outlined below, automatically rec-
ognizes when a connection is or is not in the default
state and allocates and deallocates connection state,
without connection management packet exchanges.

Delta-t's connection management mechanism is
conceptually straightforward. For a given stream the
sender and receiver maintain connection state and a
send-timer and a receive-timer, respectively, when
data are being exchanged. The initial values for these
timers and the rules for their operation assure that the
opening and closing requirements listed in the next
section are met. These rules are specified and derived
in references 111, 211. Simply stated, the receive-timer
rules assure that state is maintained long enough so

that all old duplicates are detectable, assuring reliable
connection opening, and that the node will not accept
packets for a safe interval on crash recovery. The send
and receive timers together assure that state is main-
tained long enough to guarantee a graceful close and
that acceptable sequence numbers are generated and
accepted. The send-timer rules assure that sequence
numbers will not be reused, even in the face of a node
crash, until all data or Ack packets with a given
sequence number have expired.

A time-to-live field in packet headers is
decremented during packet routing, retransmission,
and acknowledgement to assure that the lifetime of a
Delta-t packet is bounded. A related packet header
field allows the sender to communicate to the receiver
what the initial value of this lifetime was for the
oldest sequence number in the packet, thus enabling
the receiver to set its timers properly and set the time-
to-live field of corresponding Acks correctly.

3. Connection Manave ment

All transport protocols, whether for wide area or
high performance local area networks, must protect
against the connection management hazards
introduced by lost, duplicated, or out-of-sequence
packets, unless special network error properties can be
assumed in the protocol design. All of these
connection management hazards are frequently not
protected against in existing or proposed transport
protocols, particularly in a general multipath mesh
network. The main contribution of the design of
Delta-t was to demonstrate the fundamental role of
timer mechanisms in safe connection management
mechanism and to develop a pure timer-based
connection management scheme.

There are three basic mechanisms used in
connection management: 3-way handshake, unique-
connection-identifiers, and timer. Even with the first
two, timer-based mechanisms are required for hazard
free connection management. This is because
handshakes or unique-connection-identifiers by
themselves cannot meet all of the following
connection management requirements:

General

G1: An identifier of an information unit used for
error control (or any other service) must not
be reused while one or more copies
(duplicates) of that unit or its Ack are alive.

G2: The error control information being
transmitted between each end must itself be
error controlled.

G3: If the crash of an end can cause it to lose its
state, then appropriate crash recovery
mechanism must assure the other
requirements are met.

Connection ODening

01: If no connection exists, and the receiver is
willing to receive, no duplicate packets from a
previously closed connection should cause a
new connection to be established and
duplicate data to be accepted, unless the
operations represented by the data are known
to be idempotent.

02: If a connection exists, then no packets from a
previously closed connection should be
acceptable within a current connection.

Connection Closing

C1: No packet from a previous connection should
cause an existing connection to close.

While the ambiguity eliminated by the next two
graceful close requirements is still possible if an
end node crashes or the network partitions, we
want to limit ambiguity to exactly these events and
not have ambiguity introduced by the operation of
the protocol. Unless C2 and C3 are met the sender
could be left in the unnecessarily ambiguous
position of not knowing if a receiver received all
data that was sent. The designers of the IS0
transport protocol chose to meet these
requirements at higher protocol levels [141.

C2 A receiving side should not close until it has
received all of a sender's possible
retransmissions and can respond to them.

C3: A sending side should not close until it has
received acknowledgement of all that it has
sent. In particular it should allow time for an
acknowledgement of its final retransmission,
if needed, before reporting a failure to its
client program.

Below we briefly review some of the issues in
meeting the above requirements using 3-way
handshake, unique-connection-id, and timer-based
mechanisms. Our recommendation to transport
protocol designers is that they do a complete case
analysis in the face of all the hazards that can occur in
the environment for which they are designing (e.g.,
lost, duplicated, or out-of-sequence data and control
packets in the general mesh network) to assure these
requirements are met.

First, we need to discuss bounding error control
identifier lifetime as needed to meet requirement G1.
It is of course equally true that the lifetime of
identifiers used for flow control, secure communica-
tions or other service must also be bounded if they are
different from those used for error control. This need
to bound identifier lifetime in units of time rather
than routing hops is now widely recognized and most
network level protocols include a time-to-live field in
their headers. This maximum-packet-lifetime (MPL)
is to be enforced at the routing level (including the
ends). MPL can also be enforced between gateways
across a network lacking packet aging services 1161.

Bounding MPL in the routing network is a
valuable and necessary service, but by itself is not
sufficient because the error control identifiers live in
the end nodes as well. On the sending side there are
send queuing delays and there is the retransmission
interval, R, that the identifier may be held and then be
resent into the network. On the receiving side there is
the queuing interval from the receipt of a packet until
transport protocol processing begins and the interval,
A, until an acknowledgement is issued during which
an identifier can live. We assume that time spent on
packet queues in the end nodes is included in the
routing level packet aging process. Therefore, an error
control identifier, such as a sequence number or
unique-connection-id I41 or unique-port-identifier 12,
31, could live 2MPL + R + A, if MPL is initialized to
the same value on all packets containing a given error
control identifier.

The identifier lifetime bounding process needs to
take the R and A intervals as well as MPL into
account. For example, in Delta-t implementations,
successive retransmissions enter the network preaged
by TTL = T(1) - T(R), where 'ITL is the value set in the
time-to-live field of a packet, T(1) is the maximum
time-to-live of the first transmission of the oldest
identifier in a packet and T(R) is the time since the
first transmission of the oldest identifier to a given
retransmission. Similarly Acks enter the network
preaged by TTL = T(1) - T(A), where ITL is as above,
T(1) is the initial time-to-live of the received identifier
and T(A) is the time to generate the Ack. TO), or what
we have called Delta-t, is chosen by the sender as a
function of reasonable routing network MPL, known
R, and expected A.

Determining a reasonable R and A is difficult if
application level libraries implement the protocol,
because both R and A are functions of process
scheduling, which is affected by system load and
application priority. The result is that if the protocol
is implemented in application level libraries, even in
a high performance local area network environment,
a TU), in the 60 second or longer range, may be
required. This need to implement protocols, under

402

certain circumstances, in application level libraries
and its impact on protocol design and
implementation is often ignored.

For safe connection management, state
information must be held for particular periods of
time. The state held and the period of time it is held
is dependent on the protocol and on how particular
connection management mechanisms are used by a
given protocol. Analysis of several existing or
proposed transport protocols over the years has
shown that they contain connection management
hazards because state is not being held sufficiently
long. Because we are in an active period, when new
protocols are being designed and possibly
standardized, for high performance networks, it seems
useful to briefly review connection management
using 3-way handshakes, unique-connection-ids, and
timers. We assume a general multipath topology,
where lost, duplicated, and out-of-sequence packets
are possible.

3-Wav Handshake

3-way handshakes can be used for either
connection opening, closing, or both. For example,
TCP uses 3-way handshakes for both opening and
closing. VMTP optionally can use a 3-way handshake
on opening, and XTP uses a 3-way handshake for
closing [2,4,13].

VMTP normally uses timer mechanism for
closing, which when combined with unique-
connection-ids (implemented as unique entity
addresses) does not normally require a 3-way open.
However, if the end is recovering from a crash or
discards state earlier than would be safe, then a 3-way
handshake open is required.

XTP uses unique-connection-ids for opening to
meet condition 0 2 and C1, but requires, not yet
specified, timer mechanism to meet 01. To meet
requirements C2 and C3 it uses a Sway close to try to
discard state as quickly as possible. Unfortunately this
handshake still does not meet 01.

A 3-way handshake opening protocol meets
requirement 01 by having the receiver in effect ask
the sender on each connection opening request "do
you really mean it or is this a duplicate". It requires
timer mechanism, or a unique-connection-identifier
(e.g., in TCP the careful choice of initial sequence
numbers in effect create unique-connection-ids), and
associated careful choice of the size of the identifier
space and possible control on the rate of identifier
generation in order to meet requirements G1, G3, 0 2
and C1 [18,191. Requirement G2 can be met if the
connection management "open" and "close" control

flags are included in the sequence space or are
otherwise error protected.

Timers are required in a 3-way close protocol, such
as TCP, to meet conditions C2 and C3 [18, 191. This
need for timers in some 3-way close protocols results
because the last packet containing a close flag may also
contain data or the Ack of the close packet could also
Ack data. The Ack of the data and close could be lost.
In any protocol the last message cannot be critical,
because it is not Acked. If the sender of the last close-
ack closed immediately after emitting the close-ack
(implicitly Acking data as well), and its close-ack got
lost, then the other side would timeout and
retransmit the unAcked data and close flag. The
closed side on receiving the retransmitted
information can only generate a Nak or reset packet
indicating it was closed. The receiver of the reset
would then not be able to distinguish this case where
there was successful delivery of data, but a lost Ack,
from the case of a crash or network failure with lost
data. Therefore, the sender of the last close-ack (the
receiving side of requirement C2) must wait an
interval in order to assure it can respond to all its
correspondents retransmitted close packets.

Alternatively another type of Ack packet could be
used to in effect Ack the close-ack. When such a
packet was received, state could be safely discarded
because if this packet were lost no ambiguity would
result as no data is involved.

A giveup timer is required to meet requirement
C3. This giveup timer results because the sender must
allow time for its last retransmission, time for an Ack
to be generated, and time for the Ack to return before
reporting failure to high layers. If a problem is
reported before a giveup interval, the user application
process may create an unnecessary duplication or the
application process may unnecessarily enter an
involved error recovery procedure to deal with what
appears as a possible partner crash or network failure.

Therefore, in order to meet requirements C2 and
C3 protocols using a 3-way handshake close
mechanism need timer mechanism for hazard free
operation.

Uniaue-connection-ids

A unique-connection-id based protocol, meets
requirements G1, G3, 0 2 and C1 if it can guarantee
generation of unique-connection-ids for each new
connection, through appropriately picking a unique-
connection-id space size and possibly limiting rate of
identifier use. Unique-connection-id protocols
require stable storage or clock mechanism in the face
of crashes in order to assure uniqueness. To meet G1,
G3, 0 2 and C1, a unique-connection-id cannot be

403

reused, after a connection has closed or after a sender
or receiver recovers from a crash, for a period long
enough to guarantee all packets with that identifier
have expired. The receiver must maintain state
under timer control after a connection closes until all
duplicates, including retransmissions have expired in
order to meet requirement 01. Even if a 3-way hand-
shake close is used, state must be maintained for an
interval to meet requirement 01. The timer periods
for holding state to meet 01 depend on the protocol
details. G2 is met, for example, by error control of the
combination of unique-connection-id and sequence
number. Unique-connection-ids cannot assure a
graceful close and therefore must be combined with
timer or 3-way handshake mechanism or both for a
safe closing meeting C2 and C3.

Timer
-

A timer-based protocol is one that maintains state
under timer control in order to meet the
requirements G1, G3, 01, 02, C1, C2, and C3, for
example as outlined for Delta-t in Section 2.
Requirement G2 is met because, in a protocol such as
Delta-t, there are no opening or closing flags that need
to be protected and the ordinary sequence number
mechanism for data is all that is required. There are
many possible timer-based protocols. While timer
protocols are very simple in concept, determining the
correct timer values and rules for timer operations is
protocol dependent and somewhat subtle. The timer
values and rules for Delta-t needed to meet the above
requirements are derived in references [ll, 211. Timer
considerations for VMTP are discussed in references
R31.

In a timer-based protocol, the receiver maintains
error control or other service identifier state under
send- and/or receive-timer control. The receive-timer
is refreshed each time a new identifier is accepted, the
connection is closed, or as the result of some other
rule required by a given protocol. The interval of the
receive-timer is chosen so as to guarantee that all
sender retransmissions and other duplicates will be
recognized in order to meet requirements 01, 02, C1,
and C2. If a receiver crashes and loses state, it must
wait a specified interval before accepting packets to
meet G1, G3, 01, 0 2 , and C1, in order for
retransmissions and duplicates of identifiers sent
before the crash to expire.

The sender maintains identifier state under send-
timer control long enough to guarantee that it can
generate acceptable unique identifiers and that all data
sent or resent have a chance to be acknowledged as per
requirements G1 and C3. If a sender crashes, then it
must wait a specified interval on recovery in order to
meet requirements G1 and G3.

Summarv
The connection management design tradeoff

facing protocol designers is that of trading off extra
packet- exchanges, when 3-way handshakes are used,
or state retention, when timer mechanisms are used.
Even with a 3-way close, timer mechanism may be
required unless the 3-way close occurs after all data
has been sent and Acked. Unique-connection-id
protocols must be combined with one or both the
3-way handshake or timer mechanisms for hazard
free connection opening and closing.

Because connection management is a subtle issue
we would like to see protocol descriptions or
specifications explicitly state the network topology and
error assumptions they are designed to deal with and
explicitly show how they meet the connection
management requirements given above. Further, it
would help in determining the correctness of the
protocol if any timer rules for state retention or for
reuse of unique-connection-identifiers be explicitly
stated and be related to the MPL, R, and A identifier
lifetime factors discussed earlier.

4. Lesso ns Learned with D e w
Amlicable to HiPh Performance

Protocol Design and Imdementation

This section outlines briefly our experience with
the design and implementation of Delta-t applicable
to transport protocols for distributed systems and high
performance networks.

1. A general purpose transport protocol for an
arbitrary mesh network can be designed and
implemented that meets both the need for efficient
request/ response (minimum packet exchange, low
latency) and stream (high throughput) oriented
styles of communication. Packet exchanges can be
minimized for request/response communication
by the use of timer-based connection management.
Newer flow control techniques may offer improve-
ments over sliding-window-based flow control for
high throughput requirements, although recent
optimization work with TCP indicates sliding-
window-based flow control can also yield good
performance [7,15].

2. Use of a random number, at least 64 bits in size, as
a communication stream capability, and
supporting send and receive interface semantics
can simplify higher level protocols involving
secure third party communication or com-
munication between parties that do not initially
know each other‘s addresses, but do know the
stream capability.

3. Performance i s overwhelmingly an
implementation rather than a transport protocol
design issue 16-8, 15, 201. One must clearly
distinguish between the complete transport layer
implementation, which may span user and system
levels, and the transport protocol implementation.
The transport layer implementation contains the
application to operating system interface, data
copying, queuing, transfer status, buffer
management, operating system service interfaces,
and lower protocol layer interface code that is
largely independent of the transport protocol. In
addition, significant time can be spent in device
drivers.

The transport protocol is just a subroutine. In our
experience with Delta-t implementations only
5-15% of the time to send or receive a packet is in
the transport protocol processing. Similarly only
10-25% of the code is for the protocol algorithm.
Our experience has shown that the main cost to
send and receive packets, and in fact often the
number of packets exchanged, is heavily
influenced by transport protocol independent
issues such as:

the application (user) level to operating
system interface design, and its impact on the
number of context switches required and on
data copying and buffer management strategy
(e.g., does the system buffer data to be sent, is
the data for possible retransmission kept in
application or system space, what application
level data structures need updating for send
or receive status),

buffer and memory allocation strategies and
their impact on data copying and the number
of data packets and Acks generated (e.g., is
space preallocated in packet buffers for packet
headers in order to minimize copying, are
user buffers aggregated into packet buffers to
minimize the number of data packets sent?),

network driver and lower level protocol
interfaces and implementations (e.g., the
nature of the host and network interface I/O
architecture, such as number of interrupts
required to handle a packet; whether or not
there is a link level protocol and how it is
implemented),

acknowledgement and flow control strategies
and their interaction with buffer management
affect smoothness of data flow, the number of
packets exchanged, and the size of data packets
sent (e.g., is each packet acknowledged or are
Acks delayed in order to reduce their number;
how is overflow handled, is there multiple

buffering, does an end advertise window
values based on system or user buffers, are
window advertisements accurate),

lightweight tasking (e.g., the use of
lightweight tasking in our implementations
has been effective for implementation
structuring and multiprocessing, but more ex-
pensive for monoprocessing, due to extra
context switching overhead),

design decisions made in order to develop an
implementation portable across a range of
operating systems (e.g., the inability to use
system specific facilities such as mbufs in B.s.d
4.3 Unix systems, the use of additional inter-
faces for portability, and the fact, for example,
that the system interface efficient on a Cray
may not be efficient on a SUN or VAX or vice
versa).

4. Supporting a proprietary protocol in a
heterogeneous environment is costly. For an
efficient implementation we needed to place the
transport level in the kernel of several vendor's
operating systems and even in several versions of
a single vendor's operating system. We tried to do
this as a standard device driver in order not to
have to make kernel modifications. Structuring
the implementation as a device driver added
overhead. In addition, we found that avoiding
kernel modifications was not completely possible,
even across different vendor's UNIX systems,
because of UNIX or vendor specific limitations,
such as the lack of support for a kernel lightweight
tasking mechanism, or an inability, via a switch
table accessible from a utility routine, to route
incoming packets to the appropriate driver based
on a link level protocol field or link level address.
This need to make even small kernel
modifications (e.g., changing a half a dozen
instructions) has created high support cost due to:

the source code licence cost and the long
delays to get kernel source code,

delays caused by having to learn vendor
kernels and to make and debug modifications,
even if simple,

operating system quality assurance,
distribution and support,

possible conflicts with prime or third-party
vendor conventions on kernel data structure
usage.

Striving for portability has also meant that we
could not take advantage of certain optimizations

405

available to vendors in their kernel protocol
implementations. For example, not all UNIX
vendors support B.s.d. mbufs; therefore for
portability we needed a separate portable buffer
management mechanism and this required extra
data copies from our portable buffer structure to
mbufs and vice versa. Data copying is one of the
most expensive operations and must be
minimized for optimal performance [7].

This lesson indicates to us that only highly
optimized, vendor supported implementations are
likely to realize the full advantage of a given
protocol at reasonable cost.

5. Given the performance cost of implementing
transport protocol mechanism in software, high
performance may be aided by optimizing aspects of
protocol design such as minimizing options, using
fixed sized word aligned fields, and placing
checksums in a trailer; by placing transport and
lower level layer mechanism .in hardware; and by
developing the 1/0 and operating system
architectural mechanisms necessary to allow direct
DMA from application memory through transport
level processing chips to the network [17]. That is,
since most of the time is spent in transport layer
non-protocol specific processing, new system and
network 1 / 0 architectures are needed to simplify or
offload it. Without this capability the application
to operating system, operating system processing,
and conventional device driver overhead will
continue to dominate the performance,
independent of improvements in transport
protocol design [71.

We can summarize these lessons by stating that
while it is important to keep developing improved
pro tocol mechanisms, the main areas requiring work
are improving: implementation techniques;
application-to-network, operating system and 1 /0
architectures; and getting incremental protocol
improvements through the standardization process in
a more timely fashion.

Acknowledeement

I wish to acknowledge the many contributions of
the following people at various stages of Delta-t design
and implementation: Jed Donnelley, John Fletcher,
Jed Kaplan, Dan Nessett, Alex Phillips, Lansing Sloan,
Dave Wiltzius, and Rich Wolski. This work was
performed by Lawrence Livermore National
Laboratory under contract number W-7405-Eng-48
under auspices of the U.S. Department of Energy.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

References

Birrell, A. D., and Nelson, B. J. "Implementing Remote
Procedure Calls", ACM Trans. Comput. Syst. 2,1, Feb. 1984
pp. 39-59.

Cheriton, D. R., "VMTP: A Transport Protocol for the Next
Generation of Communication Systems". In Proceedings of
the SIGCOMM '86 Symposium on Communications
Architectures and Protocols (Stowe, Vt., Aug. 5-7). ACM,
New York, 1986, pp. 4M-415.

Cheriton, D. R., "VMTP: Versatile Message Transaction
Protocol Specification," Computer Science Dept., Stanford
University, 22 February, 1988.

Chesson, G., "XTP Protocol Definition" Revision 3.3,
Protocol Engines, Inc., 12 December, 1988.

Clark, D. D. Lambert, M. L., and Zhang, L. "NETBLT A
Bulk Data Transfer Protocol", DARPA Network Working
Group RFC 969, Network Information Center, SRI
International, Menlo Park, CA, December 1985.

Clark, D. D., "Window and Acknowledgment Strategy in
TCP," Internet Protocol Implementation Guide, Network
Information Center, SRI International, Menlo Park, CA,
Aug. 1982.

Clark, D. D., V. Jacobson, J.Romkey, H.Salwen, "An
Analysis of TCP Processing Overhead," IEEE
Communications Magazine, June 1989, pp. 23-29.

Clark, D. D., "The Structuring of Systems Using Upcalls",
In Proceedings of the 10th ACM Symposium on Operating
Systems Principles, Orcas Island, Wash., Dec. 1-4, ACM,
New York, 1985, pp. 171-180.

Clark, D. D., "The Design Philosophy of the DARPA
Internet Protocols", Proc. ACM SIGCOMM '88, Computer
Communications Review, Vol. 18, No. 4, Aug. 1988, pp.
106-114.

Donnelley, J. E., "Components of a Network Operating
System", Computer Networks 3,1979, pp. 389.

Fletcher, J. G., and Watson, R. W., "Mechanisms for a
Reliable Timer-based Protocol", Computer Networks, 2,
North-Holland, Amsterdam, The Netherlands, 1978, pp.
271-290.

Fletcher, J. G., "Introduction to LINCS", Available
through the Lawrence Livermore National Laboratory
Computer Center as Chapters 1-12, Lawrence Livermore
National Laboratory, Tentacle Apr.1982 to Mar. 1983.

Information Sciences Institute. DOD Standard
Transmission Control Protocol. Information Sciences
Institute, Marina del Ray, CA, September 1981, Available
from Network Information Center, SRI International as
RFC 793.

International Standards Organization. Information
processing systems--open systems interconnection-transport
protocol specification. International Standards
Organization, ISO/DIS 8073, Rev., ISO/TC 97/SC
16WG 6, June 29,1984.

406

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Jacobson, V., "Congestion Control and Avoidance", Proc.
ACM SIGCOMM '88 Symposium, ACM, Aug. 88, Stanford,
CA.

Sloan, L., "Mechanisms that Enforce Bounds on Packet
Lifetimes", ACM Trans. Comput. Syst. 1, 4, Nov. 1983,
pp. 311-330.

Kanakia, H., Cheriton, D., "The VMP Network Adapter
Board (NAB): High Performance Network
Communication for Multiprocessors".Proc. SIGCOMM 88
Symposium, ACM, Aug. 88, pp. 175-187.

Sunshine, C. A. and Dalal, K. K., "Connection Management
in Transport Protocols", Computer Networks 2, 4/5,
Sept./Oct. 1978.

Watson, R. W., "Timer-based Mechanisms in Reliable
Transport Protocol Connection Management", Computer
Networks 5, North-Holland, Amsterdam, The
Netherlands 1981, pp. 47-56.

Watson, R. W. Mamrak, S . A., "Gaining Efficiency in
Transport Services by Appropriate Design and
Implementation Choices", ACM Trans. on Computer
Systems, Vol. 5, No. 2, May 1987, pp. 97-120.

Watson, R. W., Delta-t protocol specification. UCID-
19293, Lawrence Livermore Laboratory, Livermore, CA,
Apr. 1983.

Watson, R. W., and Fletcher, J. G., "An Architecture for
Support of Network Operating System Services".
Computer Networks 4, North-Holland, Amsterdam, The
Netherlands 1980, pp. 33-49.

Watson, R. W., "Notes on Operating System Requirements
for the Next Millennium," Proceedings, Cray User Group
Meeting, Minneapolis, April 1988.

Watson, R. W., "The Architecture of Future Operating
Systems," Proceedings Cray User Group Meeting, Tokyo,
September 1988.

Watson, R. W., "LINCS Session, Presentation, Common
Application Protocols", Lawrence Livermore National
Laboratory, December 2,1982.

Watson, R. W., "Working Notes: Motivation Goals, and
Development Strategy for NLTSS", Lawrence Livermore
National Laboratory, July 1987.

407

