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Abstrad 
With the advent of new high performance 

networks and distributed systems there is renewed 
interest in transport protocol designs that can support 
both request/response and stream styles of 
communication. Delta-t is a transport protocol 
designed to meet such goals. Delta-t's main 
contribution is in the area of connection 
management, where it achieves hazard free 
connection management without explicit packet 
exchanges. This paper reviews Delta-t's features, 
connection management more generally, and outlines 
some implementation lessons useful for high 
performance networks. 

1. introduction 

At the Lawrence Livermore National Laboratory 
(LLNL) we have developed an integrated network and 
distributed operating system architecture that we call 
the Livermore Integrated Network Computing 
System (LINCS) [12, 261. LINCS was designed to 
integrate a wide range of heterogeneous micro to 
supercomputer systems. It has been implemented as 
the native multiprocessing operating system on our 
Cray XMP and YMP systems, called NLTSS [10,23,24, 
261, and as a guest on various flavors of Unix, VMS 
and other systems. 

LINCS is a capability based, multitasking, message 
passing, client /server architecture. Capabilities are 
protected by servers against forgery through 
encryption, and are just ordinary data kept in 
application memory space and sent in messages. 
LINCS defines a number of standard server supported 
abstract object interfaces (e.g., file, process, directory, 
clock, account, etc.), an interprocess communication 
model, and a set of communication protocols from 
the link to application levels [12, 21, 251. Many of the 
protocols will be replaced by national or international 
standards when appropriate ones are developed and 
are vendor supported. 

Early on in this project we recognized that we 
needed a high performance transport protocol that 

could efficiently support both the request/response 
transaction style of communication needed for 
client/server interactions and the stream style of 
communication needed for terminal sessions and 
bulk data transfer. 

Our list of requirements was the following: 

1. Minimum packet exchange for request/response 
transactions. 

2. High throughput bulk data transport and other 
stream services. 

3. Flow control without polling for reliable zero 
window opening. 

4. Error control of lost, damaged, duplicated, and 
out-of-sequence packets. 

5. Large and flexible name space for transport end 
points. 

6. Message boundary preservation. 

7. Secure communications. 

In 1977, when the project began, the only available 
general purpose transport protocol was TCP 1131. TCP 
was not widely supported by vendors at that time and 
required excessive connection management packets to 
exchange a request and response. It also failed to meet 
other of the requirements above. Therefore, we de- 
cided to reexamine the connection management 
problem and meet our other requirements. 

We did not want a special-purpose transport 
protocol that made limiting assumptions about the 
topology or error properties of the network or was 
specially tailored just for the request-response style 
communication [l, 201. We wanted a general-purpose 
transport protocol that could meet all our needs in a 
general network topology. From this effort the Delta-t 
protocol emerged [ll, 211. Delta-t's design goal was to 
allow complete requests or replies to be sent using two 
packets in the usual case, one packet for the request or 
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reply and one for its Ack. No other packets should be 
required for connection opening or closing. Because 
an Ack can acknowledge more than one data packet, 
bulk data transfer can be achieved using less than one 
Ack per data packet, using delayed Acks. 

Delta-t has had several implementations and has 
been operational about seven years. The sections 
below outline what we have learned from this work 
useful in protocol design and implementation for 
high performance networks. Delta-t's main contribu- 
tion to high performance, or lightweight, protocol 
design is in the area of connection management [18, 
191. Delta-t's connection management mechanisms 
can be used in both connection oriented link level and 
transport protocols. We focus here on transport 
protocol design. It is our observation that connection 
management is still a troublesome area in transport 
protocols because they often contain connection man- 
agement hazards or do not clearly define the network 
topology and error assumptions that would make 
them safe. Even in high performance networks these 
hazards must be considered. 

Section 2 outlines the features of Delta-t. Section 3 
reviews the main requirements and mechanisms of 
connection management that must be dealt with or 
used by any transport protocol. Section 4 outlines 
other lessons we have learned. 

2. Outli ne of De Ita-t's Featurea 

The functionality of Delta-t is split into a 
connectionless network level protocol and a transport 
level protocol. The former handles those services 
provided by datagram routing nodes (including 
routing software in the ends) and the latter those 
services provided just by the ends. Here we describe 
them together as if Delta-t were a single protocol. 
Delta-t can be implemented on other connectionless 
network protocols such as DARPA's IP or ISOs CLNP. 

Naming 

Communication takes place between ports on 
processes. A process consists of a memory address 
space, a port address space, and one or more 
lightweight threads of control, called tasks, that share 
the memory address and port address spaces. Ports are 
identified by 64 bit addresses unique over the network. 
These addresses can be location independent generic 
addresses, or location specific hierarchical physical 
addresses. The former can be mapped through a 
name server to the latter. 

Security 

All packets carry two security related fields, a four 
bit protection label (unclassified, confidential, secret, 

etc.) so that a mandatory security policy can be 
enforced by all nodes of the network, and a 64 bit 
random number, called a stream number described 
below. Besides checking the protection label, routing 
nodes check source addresses at the boundary between 
different administrative or protection domains to 
assure that they are legitimate in the source domain. 
This check prevents masquerade by processes outside 
the next domain to which the packet is to be routed. 

The stream number, which is generated by the 
application level, is in effect a communication stream 
capability establishing the sender's right to 
communicate the data or Ack packet. It is also used as 
a transaction identifier for synchronizing requests 
with their associated replies. A stream is a 
unidirectional flow defined by the triple (destination 
port, source port, stream number). Higher level 
communication primitives allow send and receive 
specifics, where all three members of the triple are 
specified, or send and receive anys, where one or 
more members of the triple can be any value. Stream 
numbers and support for send and receive specifics 
and anys have been very useful in designing flexible, 
access controlled higher level communication 
structures between two or more parties not initially 
known to each other. 

Data Units 

Delta-t supports an alphabet visible at the transport 
interface consisting of bits (0,l) and the symbols B, E, 
W. Higher level protocols define how the latter are 
used. The position in the stream of the B, E, and W 
symbols is visible at the transport interface. Generally 
B and E delimit the beginning and ending of some 
high level unit such as a message or monolog [=I. 
The W can be used by a sender to indicate a point of 
advisory wakeup when it has sent enough 
information for the receiver to process usefully. Bits 
were chosen as the fundamental unit of error and 
flow control rather than bytes because at the time 
Delta-t was designed we had 36 and 60 bit machines as 
well as machines that were byte oriented. The cost of 
orienting Delta-t to bits has been low, specifically 3 bits 
in sequence number and flow control window fields. 

Flow Contro 1 

Delta-t supports sliding window flow control for 
the same reasons that sliding window flow control 
was chosen for TCP [91. It also supports a rendezvous- 
at-the-sender mechanism for reliably handling the 
zero window opening hazard that results from 
possible lost or out-of-sequence acknowledgements 
[21]. In Delta-t when the receiver advertises a zero 
window to the sender, or knows the sender is facing a 
zero window, it will later send a reliable zero window 
opening control packet. The rendezvous-at-sender 



mechanism relieves the sender from polling when 
facing a zero window, as it must do, for example, in 
TCP [13]. When the sender sends an E or W symbol 
both receiver and sender assume that the window, as 
viewed by the sender, is zero because most 
implementations will mark a buffer as complete 
when either of these symbols arrive. 

Our experience, like that of others, has been that 
the interaction of flow control and buffer 
management strategies is a troublesome area and a 
cause of implementation performance problems, such 
as generating extraneous packets [6, 7, 201. Therefore, 
were we to start again we would want to examine 
alternate flow control mechanisms such as rate-based 
flow control appearing in newer protocols [2,4,51. 

Assurance 

Delta-t uses sequence numbers on bits and the B, E, 
W symbols to protect against loss, duplication, and 
out-of-sequence data. Damaged data is detected by an 
optional checksum. Delta-t supports hazard free 
connection management, without connection 
management packet exchanges, in a network with an 
arbitrary mesh topology and the possible errors listed 
above. The term connection is used to mean that 
time during which state information is maintained at 
each communicating end. Connection opening refers 
to reliably establishing this state and connection 
closing refers to reliably and unambiguously 
deallocating this state. Because we believe connection 
management is a somewhat subtle area and needs to 
be handled properly by newer high performance 
protocols, we review this area in more detail in the 
next sec tion. 

Delta-t's connection model supports the view that 
logically there are permanent error and flow 
controlled connections between all possible streams, 
each defined, as mentioned above, by the triple 
(destination port, source port, stream number). When 
a connection is in a default state, no state need be 
retained. Delta-t's timer-based connection manage- 
ment mechanism, outlined below, automatically rec- 
ognizes when a connection is or is not in the default 
state and allocates and deallocates connection state, 
without connection management packet exchanges. 

Delta-t's connection management mechanism is 
conceptually straightforward. For a given stream the 
sender and receiver maintain connection state and a 
send-timer and a receive-timer, respectively, when 
data are being exchanged. The initial values for these 
timers and the rules for their operation assure that the 
opening and closing requirements listed in the next 
section are met. These rules are specified and derived 
in references 111, 211. Simply stated, the receive-timer 
rules assure that state is maintained long enough so 

that all old duplicates are detectable, assuring reliable 
connection opening, and that the node will not accept 
packets for a safe interval on crash recovery. The send 
and receive timers together assure that state is main- 
tained long enough to guarantee a graceful close and 
that acceptable sequence numbers are generated and 
accepted. The send-timer rules assure that sequence 
numbers will not be reused, even in the face of a node 
crash, until all data or Ack packets with a given 
sequence number have expired. 

A time-to-live field in packet headers is 
decremented during packet routing, retransmission, 
and acknowledgement to assure that the lifetime of a 
Delta-t packet is bounded. A related packet header 
field allows the sender to communicate to the receiver 
what the initial value of this lifetime was for the 
oldest sequence number in the packet, thus enabling 
the receiver to set its timers properly and set the time- 
to-live field of corresponding Acks correctly. 

3. Connection Manave ment 

All transport protocols, whether for wide area or 
high performance local area networks, must protect 
against the connection management hazards 
introduced by lost, duplicated, or out-of-sequence 
packets, unless special network error properties can be 
assumed in the protocol design. All of these 
connection management hazards are frequently not 
protected against in existing or proposed transport 
protocols, particularly in a general multipath mesh 
network. The main contribution of the design of 
Delta-t was to demonstrate the fundamental role of 
timer mechanisms in safe connection management 
mechanism and to develop a pure timer-based 
connection management scheme. 

There are three basic mechanisms used in 
connection management: 3-way handshake, unique- 
connection-identifiers, and timer. Even with the first 
two, timer-based mechanisms are required for hazard 
free connection management. This is because 
handshakes or unique-connection-identifiers by 
themselves cannot meet all of the following 
connection management requirements: 

General 

G1: An identifier of an information unit used for 
error control (or any other service) must not 
be reused while one or more copies 
(duplicates) of that unit or its Ack are alive. 

G2: The error control information being 
transmitted between each end must itself be 
error controlled. 



G3: If the crash of an end can cause it to lose its 
state, then appropriate crash recovery 
mechanism must assure the other 
requirements are met. 

Connection ODening 

01: If no connection exists, and the receiver is 
willing to receive, no duplicate packets from a 
previously closed connection should cause a 
new connection to be established and 
duplicate data to be accepted, unless the 
operations represented by the data are known 
to be idempotent. 

02:  If a connection exists, then no packets from a 
previously closed connection should be 
acceptable within a current connection. 

Connection Closing 

C1: No packet from a previous connection should 
cause an existing connection to close. 

While the ambiguity eliminated by the next two 
graceful close requirements is still possible if an 
end node crashes or the network partitions, we 
want to limit ambiguity to exactly these events and 
not have ambiguity introduced by the operation of 
the protocol. Unless C2 and C3 are met the sender 
could be left in the unnecessarily ambiguous 
position of not knowing if a receiver received all 
data that was sent. The designers of the IS0 
transport protocol chose to  meet these 
requirements at higher protocol levels [141. 

C2 A receiving side should not close until it has 
received all of a sender's possible 
retransmissions and can respond to them. 

C3: A sending side should not close until it has 
received acknowledgement of all that it has 
sent. In particular it should allow time for an 
acknowledgement of its final retransmission, 
if needed, before reporting a failure to its 
client program. 

Below we briefly review some of the issues in 
meeting the above requirements using 3-way 
handshake, unique-connection-id, and timer-based 
mechanisms. Our recommendation to transport 
protocol designers is that they do a complete case 
analysis in the face of all the hazards that can occur in 
the environment for which they are designing (e.g., 
lost, duplicated, or out-of-sequence data and control 
packets in the general mesh network) to assure these 
requirements are met. 

First, we need to discuss bounding error control 
identifier lifetime as needed to meet requirement G1. 
It is of course equally true that the lifetime of 
identifiers used for flow control, secure communica- 
tions or other service must also be bounded if they are 
different from those used for error control. This need 
to bound identifier lifetime in units of time rather 
than routing hops is now widely recognized and most 
network level protocols include a time-to-live field in 
their headers. This maximum-packet-lifetime (MPL) 
is to be enforced at the routing level (including the 
ends). MPL can also be enforced between gateways 
across a network lacking packet aging services 1161. 

Bounding MPL in the routing network is a 
valuable and necessary service, but by itself is not 
sufficient because the error control identifiers live in 
the end nodes as well. On the sending side there are 
send queuing delays and there is the retransmission 
interval, R, that the identifier may be held and then be 
resent into the network. On the receiving side there is 
the queuing interval from the receipt of a packet until 
transport protocol processing begins and the interval, 
A, until an acknowledgement is issued during which 
an identifier can live. We assume that time spent on 
packet queues in the end nodes is included in the 
routing level packet aging process. Therefore, an error 
control identifier, such as a sequence number or 
unique-connection-id I41 or unique-port-identifier 12, 
31, could live 2MPL + R + A, if MPL is initialized to 
the same value on all packets containing a given error 
control identifier. 

The identifier lifetime bounding process needs to 
take the R and A intervals as well as MPL into 
account. For example, in Delta-t implementations, 
successive retransmissions enter the network preaged 
by TTL = T(1) - T(R), where 'ITL is the value set in the 
time-to-live field of a packet, T(1) is the maximum 
time-to-live of the first transmission of the oldest 
identifier in a packet and T(R) is the time since the 
first transmission of the oldest identifier to a given 
retransmission. Similarly Acks enter the network 
preaged by TTL = T(1) - T(A), where ITL is as above, 
T(1) is the initial time-to-live of the received identifier 
and T(A) is the time to generate the Ack. TO), or what 
we have called Delta-t, is chosen by the sender as a 
function of reasonable routing network MPL, known 
R, and expected A. 

Determining a reasonable R and A is difficult if 
application level libraries implement the protocol, 
because both R and A are functions of process 
scheduling, which is affected by system load and 
application priority. The result is that if the protocol 
is implemented in application level libraries, even in 
a high performance local area network environment, 
a TU), in the 60 second or longer range, may be 
required. This need to implement protocols, under 
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certain circumstances, in application level libraries 
and its impact on  protocol design and 
implementation is often ignored. 

For safe connection management, state 
information must be held for particular periods of 
time. The state held and the period of time it is held 
is dependent on the protocol and on how particular 
connection management mechanisms are used by a 
given protocol. Analysis of several existing or 
proposed transport protocols over the years has 
shown that they contain connection management 
hazards because state is not being held sufficiently 
long. Because we are in an active period, when new 
protocols are being designed and possibly 
standardized, for high performance networks, it seems 
useful to briefly review connection management 
using 3-way handshakes, unique-connection-ids, and 
timers. We assume a general multipath topology, 
where lost, duplicated, and out-of-sequence packets 
are possible. 

3-Wav Handshake 

3-way handshakes can be used for either 
connection opening, closing, or both. For example, 
TCP uses 3-way handshakes for both opening and 
closing. VMTP optionally can use a 3-way handshake 
on opening, and XTP uses a 3-way handshake for 
closing [2,4,13]. 

VMTP normally uses timer mechanism for 
closing, which when combined with unique- 
connection-ids (implemented as unique entity 
addresses) does not normally require a 3-way open. 
However, if the end is recovering from a crash or 
discards state earlier than would be safe, then a 3-way 
handshake open is required. 

XTP uses unique-connection-ids for opening to 
meet condition 0 2  and C1, but requires, not yet 
specified, timer mechanism to meet 01. To meet 
requirements C2 and C3 it uses a Sway close to try to 
discard state as quickly as possible. Unfortunately this 
handshake still does not meet 01. 

A 3-way handshake opening protocol meets 
requirement 01 by having the receiver in effect ask 
the sender on each connection opening request "do 
you really mean it or is this a duplicate". It requires 
timer mechanism, or a unique-connection-identifier 
(e.g., in TCP the careful choice of initial sequence 
numbers in effect create unique-connection-ids), and 
associated careful choice of the size of the identifier 
space and possible control on the rate of identifier 
generation in order to meet requirements G1, G3, 0 2  
and C1 [18,191. Requirement G2 can be met if the 
connection management "open" and "close" control 

flags are included in the sequence space or are 
otherwise error protected. 

Timers are required in a 3-way close protocol, such 
as TCP, to meet conditions C2 and C3 [18, 191. This 
need for timers in some 3-way close protocols results 
because the last packet containing a close flag may also 
contain data or the Ack of the close packet could also 
Ack data. The Ack of the data and close could be lost. 
In any protocol the last message cannot be critical, 
because it is not Acked. If the sender of the last close- 
ack closed immediately after emitting the close-ack 
(implicitly Acking data as well), and its close-ack got 
lost, then the other side would timeout and 
retransmit the unAcked data and close flag. The 
closed side on receiving the retransmitted 
information can only generate a Nak or reset packet 
indicating it was closed. The receiver of the reset 
would then not be able to distinguish this case where 
there was successful delivery of data, but a lost Ack, 
from the case of a crash or network failure with lost 
data. Therefore, the sender of the last close-ack (the 
receiving side of requirement C2) must wait an 
interval in order to assure it can respond to all its 
correspondents retransmitted close packets. 

Alternatively another type of Ack packet could be 
used to in effect Ack the close-ack. When such a 
packet was received, state could be safely discarded 
because if this packet were lost no ambiguity would 
result as no data is involved. 

A giveup timer is required to meet requirement 
C3. This giveup timer results because the sender must 
allow time for its last retransmission, time for an Ack 
to be generated, and time for the Ack to return before 
reporting failure to high layers. If a problem is 
reported before a giveup interval, the user application 
process may create an unnecessary duplication or the 
application process may unnecessarily enter an 
involved error recovery procedure to deal with what 
appears as a possible partner crash or network failure. 

Therefore, in order to meet requirements C2 and 
C3 protocols using a 3-way handshake close 
mechanism need timer mechanism for hazard free 
operation. 

Uniaue-connection-ids 

A unique-connection-id based protocol, meets 
requirements G1, G3, 0 2  and C1 if it can guarantee 
generation of unique-connection-ids for each new 
connection, through appropriately picking a unique- 
connection-id space size and possibly limiting rate of 
identifier use. Unique-connection-id protocols 
require stable storage or clock mechanism in the face 
of crashes in order to assure uniqueness. To meet G1, 
G3, 0 2  and C1, a unique-connection-id cannot be 
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reused, after a connection has closed or after a sender 
or receiver recovers from a crash, for a period long 
enough to guarantee all packets with that identifier 
have expired. The receiver must maintain state 
under timer control after a connection closes until all 
duplicates, including retransmissions have expired in 
order to meet requirement 01. Even if a 3-way hand- 
shake close is used, state must be maintained for an 
interval to meet requirement 01. The timer periods 
for holding state to meet 01 depend on the protocol 
details. G2 is met, for example, by error control of the 
combination of unique-connection-id and sequence 
number. Unique-connection-ids cannot assure a 
graceful close and therefore must be combined with 
timer or 3-way handshake mechanism or both for a 
safe closing meeting C2 and C3. 

Timer 
- 

A timer-based protocol is one that maintains state 
under timer control in order to  meet the 
requirements G1, G3, 01, 02,  C1, C2, and C3, for 
example as outlined for Delta-t in Section 2. 
Requirement G2 is met because, in a protocol such as 
Delta-t, there are no opening or closing flags that need 
to be protected and the ordinary sequence number 
mechanism for data is all that is required. There are 
many possible timer-based protocols. While timer 
protocols are very simple in concept, determining the 
correct timer values and rules for timer operations is 
protocol dependent and somewhat subtle. The timer 
values and rules for Delta-t needed to meet the above 
requirements are derived in references [ll, 211. Timer 
considerations for VMTP are discussed in references 
R31. 

In a timer-based protocol, the receiver maintains 
error control or other service identifier state under 
send- and/or receive-timer control. The receive-timer 
is refreshed each time a new identifier is accepted, the 
connection is closed, or as the result of some other 
rule required by a given protocol. The interval of the 
receive-timer is chosen so as to guarantee that all 
sender retransmissions and other duplicates will be 
recognized in order to meet requirements 01, 02, C1, 
and C2. If a receiver crashes and loses state, it must 
wait a specified interval before accepting packets to 
meet G1, G3, 01, 0 2 ,  and C1, in order for 
retransmissions and duplicates of identifiers sent 
before the crash to expire. 

The sender maintains identifier state under send- 
timer control long enough to guarantee that it can 
generate acceptable unique identifiers and that all data 
sent or resent have a chance to be acknowledged as per 
requirements G1 and C3. If a sender crashes, then it 
must wait a specified interval on recovery in order to 
meet requirements G1 and G3. 

Summarv 
The connection management design tradeoff 

facing protocol designers is that of trading off extra 
packet- exchanges, when 3-way handshakes are used, 
or state retention, when timer mechanisms are used. 
Even with a 3-way close, timer mechanism may be 
required unless the 3-way close occurs after all data 
has been sent and Acked. Unique-connection-id 
protocols must be combined with one or both the 
3-way handshake or timer mechanisms for hazard 
free connection opening and closing. 

Because connection management is a subtle issue 
we would like to see protocol descriptions or 
specifications explicitly state the network topology and 
error assumptions they are designed to deal with and 
explicitly show how they meet the connection 
management requirements given above. Further, it 
would help in determining the correctness of the 
protocol if any timer rules for state retention or for 
reuse of unique-connection-identifiers be explicitly 
stated and be related to the MPL, R, and A identifier 
lifetime factors discussed earlier. 

4. Lesso ns Learned with D e w  
Amlicable to HiPh Performance 

Protocol Design and Imdementation 

This section outlines briefly our experience with 
the design and implementation of Delta-t applicable 
to transport protocols for distributed systems and high 
performance networks. 

1. A general purpose transport protocol for an 
arbitrary mesh network can be designed and 
implemented that meets both the need for efficient 
request/ response (minimum packet exchange, low 
latency) and stream (high throughput) oriented 
styles of communication. Packet exchanges can be 
minimized for request/response communication 
by the use of timer-based connection management. 
Newer flow control techniques may offer improve- 
ments over sliding-window-based flow control for 
high throughput requirements, although recent 
optimization work with TCP indicates sliding- 
window-based flow control can also yield good 
performance [7,15]. 

2. Use of a random number, at least 64 bits in size, as 
a communication stream capability, and 
supporting send and receive interface semantics 
can simplify higher level protocols involving 
secure third party communication or com- 
munication between parties that do not initially 
know each other‘s addresses, but do know the 
stream capability. 



3. Performance  i s  overwhelmingly  an  
implementation rather than a transport protocol 
design issue 16-8, 15, 201. One must clearly 
distinguish between the complete transport layer 
implementation, which may span user and system 
levels, and the transport protocol implementation. 
The transport layer implementation contains the 
application to operating system interface, data 
copying, queuing, transfer status, buffer  
management, operating system service interfaces, 
and lower protocol layer interface code that is 
largely independent of the transport protocol. In 
addition, significant time can be spent in device 
drivers. 

The transport protocol is just a subroutine. In our 
experience with Delta-t implementations only 
5-15% of the time to send or receive a packet is in 
the transport protocol processing. Similarly only 
10-25% of the code is for the protocol algorithm. 
Our experience has shown that the main cost to 
send and receive packets, and in fact often the 
number of packets exchanged, is heavily 
influenced by transport protocol independent 
issues such as: 

the application (user) level to operating 
system interface design, and its impact on the 
number of context switches required and on 
data copying and buffer management strategy 
(e.g., does the system buffer data to be sent, is 
the data for possible retransmission kept in 
application or system space, what application 
level data structures need updating for send 
or receive status), 

buffer and memory allocation strategies and 
their impact on data copying and the number 
of data packets and Acks generated (e.g., is 
space preallocated in packet buffers for packet 
headers in order to minimize copying, are 
user buffers aggregated into packet buffers to 
minimize the number of data packets sent?), 

network driver and lower level protocol 
interfaces and implementations (e.g., the 
nature of the host and network interface I/O 
architecture, such as number of interrupts 
required to handle a packet; whether or not 
there is a link level protocol and how it is 
implemented), 

acknowledgement and flow control strategies 
and their interaction with buffer management 
affect smoothness of data flow, the number of 
packets exchanged, and the size of data packets 
sent (e.g., is each packet acknowledged or are 
Acks delayed in order to reduce their number; 
how is overflow handled, is there multiple 

buffering, does an end advertise window 
values based on system or user buffers, are 
window advertisements accurate), 

lightweight tasking (e.g., the use of 
lightweight tasking in our implementations 
has been effective for implementation 
structuring and multiprocessing, but more ex- 
pensive for monoprocessing, due to extra 
context switching overhead), 

design decisions made in order to develop an 
implementation portable across a range of 
operating systems (e.g., the inability to use 
system specific facilities such as mbufs in B.s.d 
4.3 Unix systems, the use of additional inter- 
faces for portability, and the fact, for example, 
that the system interface efficient on a Cray 
may not be efficient on a SUN or VAX or vice 
versa). 

4. Supporting a proprietary protocol in a 
heterogeneous environment is costly. For an 
efficient implementation we needed to place the 
transport level in the kernel of several vendor's 
operating systems and even in several versions of 
a single vendor's operating system. We tried to do 
this as a standard device driver in order not to 
have to make kernel modifications. Structuring 
the implementation as a device driver added 
overhead. In addition, we found that avoiding 
kernel modifications was not completely possible, 
even across different vendor's UNIX systems, 
because of UNIX or vendor specific limitations, 
such as the lack of support for a kernel lightweight 
tasking mechanism, or an inability, via a switch 
table accessible from a utility routine, to route 
incoming packets to the appropriate driver based 
on a link level protocol field or link level address. 
This need to  make even small kernel 
modifications (e.g., changing a half a dozen 
instructions) has created high support cost due to: 

the source code licence cost and the long 
delays to get kernel source code, 

delays caused by having to learn vendor 
kernels and to make and debug modifications, 
even if simple, 

operating system quality assurance, 
distribution and support, 

possible conflicts with prime or third-party 
vendor conventions on kernel data structure 
usage. 

Striving for portability has also meant that we 
could not take advantage of certain optimizations 
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available to vendors in their kernel protocol 
implementations. For example, not all UNIX 
vendors support B.s.d. mbufs; therefore for 
portability we needed a separate portable buffer 
management mechanism and this required extra 
data copies from our portable buffer structure to 
mbufs and vice versa. Data copying is one of the 
most expensive operations and must be 
minimized for optimal performance [7]. 

This lesson indicates to us that only highly 
optimized, vendor supported implementations are 
likely to realize the full advantage of a given 
protocol at reasonable cost. 

5. Given the performance cost of implementing 
transport protocol mechanism in software, high 
performance may be aided by optimizing aspects of 
protocol design such as minimizing options, using 
fixed sized word aligned fields, and placing 
checksums in a trailer; by placing transport and 
lower level layer mechanism .in hardware; and by 
developing the 1/0 and operating system 
architectural mechanisms necessary to allow direct 
DMA from application memory through transport 
level processing chips to the network [17]. That is, 
since most of the time is spent in transport layer 
non-protocol specific processing, new system and 
network 1 / 0  architectures are needed to simplify or 
offload it. Without this capability the application 
to operating system, operating system processing, 
and conventional device driver overhead will 
continue to dominate the performance, 
independent of improvements in transport 
protocol design [71. 

We can summarize these lessons by stating that 
while it is important to keep developing improved 
pro tocol mechanisms, the main areas requiring work 
are improving: implementation techniques; 
application-to-network, operating system and 1 /0  
architectures; and getting incremental protocol 
improvements through the standardization process in 
a more timely fashion. 

Acknowledeement 

I wish to acknowledge the many contributions of 
the following people at various stages of Delta-t design 
and implementation: Jed Donnelley, John Fletcher, 
Jed Kaplan, Dan Nessett, Alex Phillips, Lansing Sloan, 
Dave Wiltzius, and Rich Wolski. This work was 
performed by Lawrence Livermore National 
Laboratory under contract number W-7405-Eng-48 
under auspices of the U.S. Department of Energy. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

References 

Birrell, A. D., and Nelson, B. J. "Implementing Remote 
Procedure Calls", ACM Trans. Comput. Syst. 2,1, Feb. 1984 
pp. 39-59. 

Cheriton, D. R., "VMTP: A Transport Protocol for the Next 
Generation of Communication Systems". In Proceedings of 
the SIGCOMM '86 Symposium on Communications 
Architectures and Protocols (Stowe, Vt., Aug. 5-7). ACM, 
New York, 1986, pp. 4M-415. 

Cheriton, D. R., "VMTP: Versatile Message Transaction 
Protocol Specification," Computer Science Dept., Stanford 
University, 22 February, 1988. 

Chesson, G., "XTP Protocol Definition" Revision 3.3, 
Protocol Engines, Inc., 12 December, 1988. 

Clark, D. D. Lambert, M. L., and Zhang, L. "NETBLT A 
Bulk Data Transfer Protocol", DARPA Network Working 
Group RFC 969, Network Information Center, SRI 
International, Menlo Park, CA, December 1985. 

Clark, D. D., "Window and Acknowledgment Strategy in 
TCP," Internet Protocol Implementation Guide, Network 
Information Center, SRI International, Menlo Park, CA, 
Aug. 1982. 

Clark, D. D., V. Jacobson, J.Romkey, H.Salwen, "An 
Analysis of TCP Processing Overhead," IEEE 
Communications Magazine, June 1989, pp. 23-29. 

Clark, D. D., "The Structuring of Systems Using Upcalls", 
In Proceedings of the 10th ACM Symposium on Operating 
Systems Principles, Orcas Island, Wash., Dec. 1-4, ACM, 
New York, 1985, pp. 171-180. 

Clark, D. D., "The Design Philosophy of the DARPA 
Internet Protocols", Proc. ACM SIGCOMM '88, Computer 
Communications Review, Vol. 18, No. 4, Aug. 1988, pp. 
106-114. 

Donnelley, J. E., "Components of a Network Operating 
System", Computer Networks 3,1979, pp. 389. 

Fletcher, J. G., and Watson, R. W., "Mechanisms for a 
Reliable Timer-based Protocol", Computer Networks, 2, 
North-Holland, Amsterdam, The Netherlands, 1978, pp. 
271-290. 

Fletcher, J. G., "Introduction to LINCS", Available 
through the Lawrence Livermore National Laboratory 
Computer Center as Chapters 1-12, Lawrence Livermore 
National Laboratory, Tentacle Apr.1982 to Mar. 1983. 

Information Sciences Institute. DOD Standard 
Transmission Control Protocol. Information Sciences 
Institute, Marina del Ray, CA, September 1981, Available 
from Network Information Center, SRI International as 
RFC 793. 

International Standards Organization. Information 
processing systems--open systems interconnection-transport 
protocol specification. International Standards 
Organization, ISO/DIS 8073, Rev., ISO/TC 97/SC 
16WG 6, June 29,1984. 

406 



15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

Jacobson, V., "Congestion Control and Avoidance", Proc. 
ACM SIGCOMM '88 Symposium, ACM, Aug. 88, Stanford, 
CA. 

Sloan, L., "Mechanisms that Enforce Bounds on Packet 
Lifetimes", ACM Trans. Comput. Syst. 1, 4, Nov. 1983, 
pp. 311-330. 

Kanakia, H., Cheriton, D., "The VMP Network Adapter 
Board (NAB): High Performance Network 
Communication for Multiprocessors".Proc. SIGCOMM 88 
Symposium, ACM, Aug. 88, pp. 175-187. 

Sunshine, C. A. and Dalal, K. K., "Connection Management 
in Transport Protocols", Computer Networks 2, 4/5, 
Sept./Oct. 1978. 

Watson, R. W., "Timer-based Mechanisms in Reliable 
Transport Protocol Connection Management", Computer 
Networks 5, North-Holland, Amsterdam, The 
Netherlands 1981, pp. 47-56. 

Watson, R. W. Mamrak, S .  A., "Gaining Efficiency in 
Transport Services by Appropriate Design and 
Implementation Choices", ACM Trans. on Computer 
Systems, Vol. 5, No. 2, May 1987, pp. 97-120. 

Watson, R. W., Delta-t protocol specification. UCID- 
19293, Lawrence Livermore Laboratory, Livermore, CA, 
Apr. 1983. 

Watson, R. W., and Fletcher, J. G., "An Architecture for 
Support of Network Operating System Services". 
Computer Networks 4, North-Holland, Amsterdam, The 
Netherlands 1980, pp. 33-49. 

Watson, R. W., "Notes on Operating System Requirements 
for the Next Millennium," Proceedings, Cray User Group 
Meeting, Minneapolis, April 1988. 

Watson, R. W., "The Architecture of Future Operating 
Systems," Proceedings Cray User Group Meeting, Tokyo, 
September 1988. 

Watson, R. W., "LINCS Session, Presentation, Common 
Application Protocols", Lawrence Livermore National 
Laboratory, December 2,1982. 

Watson, R. W., "Working Notes: Motivation Goals, and 
Development Strategy for NLTSS", Lawrence Livermore 
National Laboratory, July 1987. 

407 


