The Community for Technology Leaders
2013 17th International Conference on Information Visualisation (2007)
Zurich, Switzerland
July 4, 2007 to July 6, 2007
ISSN: 1550-6037
ISBN: 0-7695-2900-3
pp: 521-526
John Sharko , University of Massachusetts Lowell
Jianping Zhou , University of Massachusetts Lowell
Shannon Odelberg , University of Utah
Hans-Georg Simon , Northwestern University, Chicago, IL.
Georges G. Grinstein , University of Massachusetts Lowell
Chia-Ho Cheng , University of Massachusetts Lowell
Kenneth A. Marx , University of Massachusetts Lowell
Since clustering algorithms are heuristic, multiple clustering algorithms applied to the same dataset will typically not generate the same sets of clusters. This is especially true for complex datasets such as those from microarray time series experiments. Two such microarray datasets describing gene expression activities from regenerating newt forelimbs at various times following limb amputation were used in this study. A cluster stability matrix, which shows the number of times two genes appear in the same cluster, was generated as a heat map. This was used to evaluate the overall variation among the clustering algorithms and to identify similar clusters. A comparison of the cluster stability matrices for two related microarray experiments with different levels of precision was shown to be an effective basis for comparing the quality of the two sets of experiments. A pairwise heat map was generated to show which pairs of clustering algorithms grouped the data into similar clusters.
John Sharko, Jianping Zhou, Shannon Odelberg, Hans-Georg Simon, Georges G. Grinstein, Chia-Ho Cheng, Kenneth A. Marx, "Heat Map Visualizations Allow Comparison of Multiple Clustering Results and Evaluation of Dataset Quality: Application to Microarray Data", 2013 17th International Conference on Information Visualisation, vol. 00, no. , pp. 521-526, 2007, doi:10.1109/IV.2007.61
91 ms
(Ver )