The Community for Technology Leaders
2013 17th International Conference on Information Visualisation (2002)
London, England
July 10, 2002 to July 12, 2002
ISSN: 1093-9547
ISBN: 0-7695-1656-4
pp: 639
Adhemar Bultheel , KU Leuven
Joris Windmolders , KU Leuven
Evelyne Vanraes , KU Leuven
Paul Dierckx , KU Leuven
ABSTRACT
We give two different possibilities for subdivision of Powell — Sabin spline surfaces on uniform triangulations. In the first case, dyadic subdivision, a new vertex is introduced on each edge between two old vertices. In the second case, \sqrt 3 — subdivision, a new vertex is introduced in the center of each triangle of the triangulation. We give subdivision rules to find the new control points of the refined surface for both cases.
INDEX TERMS
null
CITATION
Adhemar Bultheel, Joris Windmolders, Evelyne Vanraes, Paul Dierckx, "Dyadic and \sqrt 3 — subdivision for Uniform Powell — Sabin Splines", 2013 17th International Conference on Information Visualisation, vol. 00, no. , pp. 639, 2002, doi:10.1109/IV.2002.1028842
90 ms
(Ver 3.3 (11022016))