Trading-Off On-Die Observability for Cache Minimum Supply Voltage Reduction in System-on-Chip (SoC) Processors
Invited Abstract

Keith Bowman, Alex Park†, Venkat Narayanan†, Francois Atallah, Alain Artieri†, Sei Seung Yoon†, Kendrick Yuen†, and David Hansquine
Qualcomm, Raleigh, NC †Qualcomm, San Diego, CA

Abstract

Circuit techniques for reducing the minimum supply voltage (V_{MIN}) of last-level and intermediate static random-access memory (SRAM) caches enhance processor energy efficiency. For the first time at a 16nm technology node, projections of a high-density 6-transistor SRAM bit cell indicate that the V_{MIN} of a 4Mb or larger cache exceeds the maximum supply voltage (V_{MAX}) for reliability. Thus, circuit techniques for cache V_{MIN} reduction are transitioning from an energy-efficient solution to a requirement for cache functionality. Traditionally, error-correcting codes (ECC) such as single-error correction, double-error detection (SECDED) aim to protect the cache operation from radiation-induced soft errors. Moreover, during the qualification of a system-on-chip (SoC) processor, test engineers monitor the rate of correctable cache errors from SECDED for observing the on-die interactions between integrated components (e.g., CPU, GPU, DSP, etc.). This presentation highlights the opportunity to exploit ECC for reducing the cache V_{MIN} while simultaneously providing coverage for radiation-induced soft errors. Silicon test-chip measurements from a 7Mb data cache in a 20nm technology demonstrate a V_{MIN} reduction of 19% from SECDED. In addition, silicon measurements provide a salient insight in that only 0.12% of the cache words contain an error when operating at the cache V_{MIN} with SECDED. Therefore, SECDED improves V_{MIN} by 19% while maintaining 99.88% coverage for radiation-induced soft errors. In applying SECDED for a lower cache V_{MIN}, the rate of correctable errors exponentially increases, thus eliminating a useful metric for on-die observability. The presentation concludes by offering alternative solutions for on-die observability.