The Community for Technology Leaders
2013 IEEE 43rd International Symposium on Multiple-Valued Logic (2008)
May 22, 2008 to May 24, 2008
ISSN: 0195-623X
ISBN: 978-0-7695-3155-7
pp: 202-207
ABSTRACT
The mathematical property of inheritance for certain unary fixed point operations has recently been exploited to enable the efficient formulation of arithmetic algorithms and circuits for operations such as the modular multiplicative inverse, exponentiation, and discrete logarithm computation in classical binary logic circuits. This principle has desirable features with regard to quantum logic circuit implementations and is generalized for the case of MVL arithmetic systems. It is shown that the inheritance principle in conjunction with the bijective nature of many unary functions is used to realize compact quantum logic cascades that require no ancilla digits and generate no garbage outputs.
INDEX TERMS
Quantum Logic, Arithmetic Circuits, Multiple-Valued Quantum Gate, Inheritance Principle
CITATION
Laura Spenner, D. Michael Miller, David W. Matula, Mitchell A. Thornton, "Quantum Logic Implementation of Unary Arithmetic Operations", 2013 IEEE 43rd International Symposium on Multiple-Valued Logic, vol. 00, no. , pp. 202-207, 2008, doi:10.1109/ISMVL.2008.27
90 ms
(Ver 3.3 (11022016))