The Community for Technology Leaders
2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (2016)
Chicago, IL, USA
May 23, 2016 to May 27, 2016
ISBN: 978-1-5090-3683-7
pp: 683-691
ABSTRACT
This paper compares different Krylov methods based on short recurrences with respect to their efficiency whenimplemented on GPUs. The comparison includes BiCGSTAB, CGS, QMR, and IDR using different shadow space dimensions. These methods are known for their good convergencecharacteristics. For a large set of test matrices taken from theUniversity of Florida Matrix Collection, we evaluate the methods'performance against different target metrics: convergence, number of sparse matrix-vector multiplications, and executiontime. We also analyze whether the methods are "orthogonal"in terms of problem suitability. We propose best practicesfor choosing methods in a "black box" scenario, where noinformation about the optimal solver is available.
INDEX TERMS
Convergence, Electric breakdown, Sparse matrices, Graphics processing units, Linear systems, Libraries, Hardware
CITATION

H. Anzt, J. Dongarra, M. Kreutzer, G. Wellein and M. Kohler, "Efficiency of General Krylov Methods on GPUs -- An Experimental Study," 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Chicago, IL, USA, 2016, pp. 683-691.
doi:10.1109/IPDPSW.2016.45
84 ms
(Ver 3.3 (11022016))