The Community for Technology Leaders
2015 IEEE International Parallel and Distributed Processing Symposium (IPDPS) (2015)
Hyderabad, India
May 25, 2015 to May 29, 2015
ISSN: 1530-2075
ISBN: 978-1-4799-8649-1
pp: 291-300
The viability and benefits of running MapReduce over modern High Performance Computing (HPC) clusters, with high performance interconnects and parallel file systems, have attracted much attention in recent times due to its uniqueness of solving data analytics problems with a combination of Big Data and HPC technologies. Most HPC clusters follow the traditional Beowulf architecture with a separate parallel storage system (e.g. Lustre) and either no, or very limited, local storage. Since the MapReduce architecture relies heavily on the availability of local storage media, the Lustre-based global storage system in HPC clusters poses many new opportunities and challenges. In this paper, we propose a novel high-performance design for running YARN MapReduce on such HPC clusters by utilizing Lustre as the storage provider for intermediate data. We identify two different shuffle strategies, RDMA and Lustre Read, for this architecture and provide modules to dynamically detect the best strategy for a given scenario. Our results indicate that due to the performance characteristics of the underlying Lustre setup, one shuffle strategy may outperform another in different HPC environments, and our dynamic detection mechanism can deliver best performance based on the performance characteristics obtained during runtime of job execution. Through this design, we can achieve 44% performance benefit for shuffle-intensive workloads in leadership-class HPC systems. To the best of our knowledge, this is the first attempt to exploit performance characteristics of alternate shuffle strategies for YARN MapReduce with Lustre and RDMA.
Yarn, Servers, Computer architecture, File systems, Bandwidth, Big data, Data analysis

M. Wasi-ur-Rahman, X. Lu, N. S. Islam, R. Rajachandrasekar and D. K. Panda, "High-Performance Design of YARN MapReduce on Modern HPC Clusters with Lustre and RDMA," 2015 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Hyderabad, India, 2015, pp. 291-300.
294 ms
(Ver 3.3 (11022016))