The Community for Technology Leaders
Parallel and Distributed Processing Symposium, International (2010)
Atlanta, GA, USA
Apr. 19, 2010 to Apr. 23, 2010
ISBN: 978-1-4244-6442-5
pp: 1-12
Daniel Delling , Microsoft Research Silicon Valley, 1065 La Avenida, Mountain View, CA 94043
Bastian Katz , Department of Computer Science, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
Thomas Pajor , Department of Computer Science, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
ABSTRACT
Exploiting parallelism in route planning algorithms is a challenging algorithmic problem with obvious applications in mobile navigation and timetable information systems. In this work, we present a novel algorithm for the so-called one-to-all profile-search problem in public transportation networks. It answers the question for all fastest connections between a given station S and any other station at any time of the day in a single query. This algorithm allows for a very natural parallelization, yielding excellent speed-ups on standard multi-core servers. Our approach exploits the facts that first, time-dependent travel-time functions in such networks can be represented as a special class of piecewise linear functions, and that second, only few connections from S are useful to travel far away. Introducing the connection-setting property, we are able to extend DIJKSTRA's algorithm in a sound manner. Furthermore, we also accelerate station-tostation queries by preprocessing important connections within the public transportation network. As a result, we are able to compute all relevant connections between two random stations in a complete public transportation network of a big city (Los Angeles) on a standard multi-core server in less than 55ms on average.
INDEX TERMS
CITATION

B. Katz, T. Pajor and D. Delling, "Parallel computation of best connections in public transportation networks," 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), Atlanta, GA, 2010, pp. 1-12.
doi:10.1109/IPDPS.2010.5470345
134 ms
(Ver 3.3 (11022016))