The Community for Technology Leaders
Parallel and Distributed Processing Symposium, International (2008)
Miami, FL, USA
Apr. 14, 2008 to Apr. 18, 2008
ISBN: 978-1-4244-1693-6
pp: 1-12
Jared Saia , Department of Computer Science, University of New Mexico, Albuquerque, 87131-1386, USA
Amitabh Trehan , Department of Computer Science, University of New Mexico, Albuquerque, 87131-1386, USA
We consider the problem of self-healing in networks that are reconfigurable in the sense that they can change their topology during an attack. Our goal is to maintain connectivity in these networks, even in the presence of repeated adversarial node deletion, by carefully adding edges after each attack. We present a new algorithm, DASH, that provably ensures that: 1) the network stays connected even if an adversary deletes up to all nodes in the network; and 2) no node ever increases its degree by more than 2 log n, where n is the number of nodes initially in the network. DASH is fully distributed; adds new edges only among neighbors of deleted nodes; and has average latency and bandwidth costs that are at most logarithmic in n. DASH has these properties irrespective of the topology of the initial network, and is thus orthogonal and complementary to traditional topology-based approaches to defending against attack. We also prove lower-bounds showing that DASH is asymptotically optimal in terms of minimizing maximum degree increase over multiple attacks. Finally, we present empirical results on power-law graphs that show that DASH performs well in practice, and that it significantly outperforms naive algorithms in reducing maximum degree increase.

J. Saia and A. Trehan, "Picking up the Pieces: Self-Healing in reconfigurable networks," 2008 IEEE International Parallel & Distributed Processing Symposium(IPDPS), Miami, FL, 2008, pp. 1-12.
96 ms
(Ver 3.3 (11022016))