Workshop on Parallel and Distributed Real-Time Systems

Workshop Description

Real-time and embedded systems have rapidly advanced from simple application-specific embedded systems handling periodic updates from sensors to include large distributed heterogeneous systems designed for asynchronous and dynamic operation with high degrees of flexibility, autonomy, quality of service, and reliability.

The International Workshop on Parallel and Distributed Real-Time Systems is a forum for the presentation and discussion of approaches, research findings, and experiences in the applications of large-scale parallel and distributed real-time systems. Of interest is the development of relevant technology (e.g., hardware, middleware, tools) as well as the applications built using such technology.

WPDRTS brings together industry, academia, and government researchers to discuss and exchange ideas in the area of large-scale parallel and distributed real-time and embedded systems and to explore the special needs and issues in applying these technologies to defense and commercial applications.

Topics of Interest:

Algorithms and Applications: addressing computing needs of large-scale parallel and distributed real-time and embedded military and commercial applications areas such as signal/image processing, advanced vision/robotic systems, smart-sensor-based systems, industrial automation/optimization, vehicle guidance, command and control, databases.

Networking: in-the-large application programming models/API's, partitioning/mapping, system integration, debugging and testing tools.

Programming Environments: software design, programming, and parallelization methods/tools for DSP-based, reconfigurable, and mixed-computation-paradigm architectures.

Operating Systems and Middleware: distributed middleware services needs (e.g., QoS, object distribution), configurable/optimal OS features needs, scheduling, runtime systems, resource management.

Architectures: special-purpose processors, packaging, mixed-computation-paradigm architectures, size/weight/power modeling and management.

Modeling, Analysis and System Specification: new paradigms, benchmarking, tools and environments, formal methods, object orientation, validation, languages, simulation, high assurance systems.

Stochastic and Dynamic Real-Time Systems

Steering Committee
Lonnie Welch (Co-Chair), Ohio University
welch@ohio.edu
David Andrews (Co-Chair), University of Kansas
dandrews@ittc.ukans.edu
Guenter Hommel, Technische Universitat Berlin
E. Douglas Jensen, The MITRE Corporation
Viktor Prasanna, University of Southern California
Behrooz Shirazi, University of Texas at Arlington
H. J. Siegel, Colorado State University
John Stankovic, University of Virginia

Kenji Toda, Electrotechnical Laboratories, Japan
General Chair
Scott Brandt, University of California Santa Cruz

Program Co-Chairs
Barb Pfarr, NASA Goddard
Armin Zimmerman, Technische Universität Berlin

Program Committee
Tarek Abdelzaher, University of Virginia
Klaus Ecker, Institut für Informatik, TU Clausthal, Germany
Jeffery P. Hansen, Carnegie Mellon University
Hermann Härtig, TU Dresden, Germany
Valery Issarny, INRIA France
Jörg Kaiser, University of Ulm, Germany
Insup Lee, University of Pennsylvania
Lennart Lindh, Mälardalen University, Sweden
Miroslaw Malek, Humboldt University Berlin
G. Manimaran, Iowa State University
Frank Müller, NC State University, Raleigh
Al Mok, University of Texas at Austin
Edgar Nett, Otto-von-Guericke-Universitaet Magdeburg, Germany
Douglas Niehaus, University of Kansas
Alexander Romanovsky, University of Newcastle upon Tyne, UK
Manas Sakse, Timesys Corporation
Oleg Sokolsky, University of Pennsylvania
Nalini Venkatasubramanian, University of California at Irvine
Horst Wedde, University Dortmund, Germany