The Community for Technology Leaders
2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI) (2017)
Boston, MA, USA
Nov 6, 2017 to Nov 8, 2017
ISSN: 2375-0197
ISBN: 978-1-5386-3876-7
pp: 477-484
ABSTRACT
In Artificial Intelligence and Machine Learning, there is a need for flexible, expressive models of uncertainty. In the case of online classification, such models should be able to adapt to the dynamics of the data-generating system, i.e. they should be nonstationary. We introduce the Dynamic Pitman- Yor Diffusion Tree (DPYDT), a generalization of the Pitman-Yor Diffusion Tree (PYDT) [1] to nonstationary streaming data. These Bayesian nonparametric priors model hierarchical structure in the data, providing interpretable structural information about patterns in the data. Our model allows this structure to evolve over time in response to changes in the data distribution. We give a description of the generative process and derive closed form expressions for the joint density of a sequence of trees, and the predictive density of successive trees. We also discuss generalizations of the diffusion underlying the PYDT to bounded and unbounded discrete variables. Finally, we describe a Sequential Monte Carlo algorithm for inference in our model, and discuss its efficiency.
INDEX TERMS
Bayes methods, classification, learning (artificial intelligence), Monte Carlo methods, trees (mathematics)
CITATION

J. Sahs and L. Khan, "Online Classification of Nonstationary Streaming Data with Dynamic Pitman-Yor Diffusion Trees," 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), Boston, MA, USA, 2018, pp. 477-484.
doi:10.1109/ICTAI.2017.00079
201 ms
(Ver 3.3 (11022016))