The Community for Technology Leaders
2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI) (2016)
San Jose, CA, USA
Nov. 6, 2016 to Nov. 8, 2016
ISSN: 2375-0197
ISBN: 978-1-5090-4459-7
pp: 606-613
ABSTRACT
In social networks that change with time, an important problem is the prediction of new links that may be formed in the future. Existing works on link prediction have focused only on networks where links are permanent, an assumption that is not valid in many real world social networks. In many real world networks, in addition to new links being created, existing links also get removed. In this paper, we extend existing link prediction methods and apply a supervised learning algorithm to networks with non-permanent links. The results we obtain on Twitter @-mention networks show that our method performs very well in such networks.
INDEX TERMS
Aging, Predictive models, Mathematical model, Supervised learning, Twitter
CITATION

R. Laishram, K. Mehrotra and C. K. Mohan, "Link Prediction in Social Networks with Edge Aging," 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), San Jose, CA, USA, 2016, pp. 606-613.
doi:10.1109/ICTAI.2016.0098
99 ms
(Ver 3.3 (11022016))