The Community for Technology Leaders
Proceedings. International Conference on Software Maintenance (Cat. No. 98CB36272) (1998)
Bethesda, Maryland
Mar. 16, 1998 to Mar. 19, 1998
ISSN: 1063-6773
ISBN: 0-8186-8779-7
pp: 104
The dynamic evolution of ecological systems in which predators and prey compete for surviving has been investigated by applying suitable mathematical models. Dynamic systems theory provides a useful way to model interspecie competition and thus the evolution of predators and prey populations. This kind of mathematical framework has been shown to be well suited to describe evolution of economical systems as well, where instead of predators and prey there are consumers and resources.Maintenance and testing activities absorbe the most relevant part of total life-cycle cost of software. Such economic relevance strongly suggests to investigate the maintenance and testing processes in order to find new models allowing software engineers to better estimate, plan and manage costs and activities. In this paper we show how dynamic systems theory could be usefully applied to maintenance and testing context, namely to model the dynamic evolution of the effort. When programmers start trying to recognize and correct code defects, while the number of residual defects decreases, the effort spent to find out any new defect has an initial increase, followed by a decline, in a similar way as prey and predators populations do.The feasibility of this approach is supported by the experimental data about two real world software projects.

P. Tonella, F. Calzolari and G. Antoniol, "Dynamic Model for Maintenance and Testing Effort," Proceedings. International Conference on Software Maintenance (Cat. No. 98CB36272)(ICSM), Bethesda, Maryland, 1998, pp. 104.
89 ms
(Ver 3.3 (11022016))