Pattern Recognition, International Conference on (2010)

Istanbul, Turkey

Aug. 23, 2010 to Aug. 26, 2010

ISSN: 1051-4651

ISBN: 978-0-7695-4109-9

pp: 2816-2819

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.690

ABSTRACT

We propose a novel stochastic graph matching algorithm based on data-driven Markov Chain Monte Carlo (DDMCMC) sampling technique. The algorithm explores the solution space efficiently and avoid local minima by taking advantage of spectral properties of the given graphs in data-driven proposals. Thus, it enables the graph matching to be robust to deformation and outliers arising from the practical correspondence problems. Our comparative experiments using synthetic and real data demonstrate that the algorithm outperforms the state-of-the-art graph matching algorithms.

INDEX TERMS

graph matching, DDMCMC

CITATION

K. M. Lee, J. Lee and M. Cho, "A Graph Matching Algorithm Using Data-Driven Markov Chain Monte Carlo Sampling,"

*2010 20th International Conference on Pattern Recognition (ICPR 2010)(ICPR)*, Istanbul, 2010, pp. 2816-2819.

doi:10.1109/ICPR.2010.690

CITATIONS