The Community for Technology Leaders
Pattern Recognition, International Conference on (2006)
Hong Kong
Aug. 20, 2006 to Aug. 24, 2006
ISSN: 1051-4651
ISBN: 0-7695-2521-0
pp: 528-531
Yu Su , Harbin Institute of Technology, Harbin, China
Shiguang Shan , ICT-ISVISION FRJDL, Institute of Computing Technology, CAS, Beijing, China
Xilin Chen , ICT-ISVISION FRJDL, Institute of Computing Technology, CAS, Beijing, China
Wen Gao , Harbin Institute of Technology, Harbin, China
ABSTRACT
Face representations based on Gabor features have achieved great success in face recognition, such as Elastic Graph Matching, Gabor Fisher Classifier (GFC), and AdaBoosted Gabor Fisher Classifier (AGFC). In GFC and AGFC, either down-sampled or selected Gabor features are analyzed in holistic mode by a single classifier. In this paper, we propose a novel patch-based GFC (PGFC) method, in which Gabor features are spatially partitioned into a number of patches, and on each patch one GFC is constructed as component classifier to form the final ensemble classifier using sum rule. The positions and sizes of the patches are learned from a training data using AdaBoost. Experiments on two large-scale face databases (FERET and CAS-PEAL-R1) show that the proposed PGFC with only tens of patches outperforms the GFC and AGFC impressively.
INDEX TERMS
CITATION

S. Shan, X. Chen, W. Gao and Y. Su, "Patch-Based Gabor Fisher Classifier for Face Recognition," 2006 18th International Conference on Pattern Recognition(ICPR), Hong Kong, 2006, pp. 528-531.
doi:10.1109/ICPR.2006.917
92 ms
(Ver 3.3 (11022016))