The Community for Technology Leaders
Pattern Recognition, International Conference on (2006)
Hong Kong
Aug. 20, 2006 to Aug. 24, 2006
ISSN: 1051-4651
ISBN: 0-7695-2521-0
pp: 1059-1062
Zhouyu Fu , Australian National University, Canberra, ACT 0200, Australia
Terry Caelli , Australian National University, Canberra, ACT 0200, Australia
Nianjun Liu , Australian National University, Canberra, ACT 0200, Australia
Antonio Robles-Kelly , Australian National University, Canberra, ACT 0200, Australia
ABSTRACT
Band ratios have many useful applications in hyperspectral image analysis. While optimal ratios have been chosen empirically in previous research, we propose a principled algorithm for the automatic selection of ratios directly from data. First, a robust method is used to estimate the Kullback-Leibler divergence (KLD) between different sample distributions and evaluate the optimality of individual ratio features. Then, the boosting framework is adopted to select multiple ratio features iteratively. Multiclass classification is handled by using a pairwise classification framework. The algorithm can also be applied to the selection of discriminant bands. Experimental results on both simple material identification and complex land cover classification demonstrate the potential of this ratio selection algorithm.
INDEX TERMS
null
CITATION

A. Robles-Kelly, N. Liu, Z. Fu and T. Caelli, "Boosted Band Ratio Feature Selection for Hyperspectral Image Classification," 2006 18th International Conference on Pattern Recognition(ICPR), Hong Kong, 2006, pp. 1059-1062.
doi:10.1109/ICPR.2006.334
93 ms
(Ver 3.3 (11022016))