The Community for Technology Leaders
Pattern Recognition, International Conference on (2006)
Hong Kong
Aug. 20, 2006 to Aug. 24, 2006
ISSN: 1051-4651
ISBN: 0-7695-2521-0
pp: 450-455
Qi Zhao , University of California, Santa Cruz, CA, USA
Jinman Kang , University of California, Santa Cruz, CA, USA
Hai Tao , University of California, Santa Cruz, CA, USA
Wei Hua , University of California, Santa Cruz, CA, USA
ABSTRACT
This paper presents a real time video surveillance system which is capable of tracking multiple humans simultaneously. To better deal with various challenging issues such as occlusions, sharp motion changes and multi-person confusions, we propose an intelligent fusion framework where multiple cues are combined to seek the optimal objects state and more reliable cues have larger influences on the final decision. Further, part based human tracking provides a second-level information fusion in that parts with weak observability can be compensated by tracking other more visible ones, which demonstrates its effectiveness for highly articulated objects like humans.
INDEX TERMS
null
CITATION

W. Hua, J. Kang, Q. Zhao and H. Tao, "Part Based Human Tracking In A Multiple Cues Fusion Framework," 2006 18th International Conference on Pattern Recognition(ICPR), Hong Kong, 2006, pp. 450-455.
doi:10.1109/ICPR.2006.914
87 ms
(Ver 3.3 (11022016))