The Community for Technology Leaders
Pattern Recognition, International Conference on (2004)
Cambridge UK
Aug. 23, 2004 to Aug. 26, 2004
ISSN: 1051-4651
ISBN: 0-7695-2128-2
pp: 124-127
Tib?rio S. Caetano , University of Alberta, Canada; UFRGS, Brazil
Terry Caelli , University of Alberta, Canada
Dante A. C. Barone , UFRGS, Brazil
We have developed a polynomial time optimal method for a class of attributed graph matching problems using the Junction Tree algorithm from Graphical Models. In this paper we compare this method with standard probabilistic relaxation labelling using different forms of point metrics and under different levels of additive noise. Results show that, no matter which of the metrics is applied, our technique is more effective than probabilistic relaxation labeling for large graph sizes. For small graph sizes, our technique is still preferable for two of the metrics, while for the third one both techniques perform similarly.

D. A. Barone, T. Caelli and T. S. Caetano, "A Comparison of Junction Tree and Relaxation Algorithms for Point Matching using Different Distance Metrics," Pattern Recognition, International Conference on(ICPR), Cambridge UK, 2004, pp. 124-127.
94 ms
(Ver 3.3 (11022016))