The Community for Technology Leaders
2017 IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS) (2017)
Shenzhen, Guangdong, China
Dec 15, 2017 to Dec 17, 2017
ISSN: 1521-9097
ISBN: 978-1-5386-2129-5
pp: 578-585
ABSTRACT
We study the problem of flow scheduling in data center networks. Using speed scaling, our aim is to find an online scheduling algorithm that minimizes the total energy consumption of the network by determining both the transmission order and rates of the arriving flows while providing a strict flow deadline guarantee. Observing the superlinear property of link power consumption, the key challenge is in constantly determining the minimum transmission rate for “delay-tolerable” flows without any priori knowledge. To leverage the flow arrival pattern, we propose a probability-based flow prediction model to capture the uncertainty of the network flows. Based on the prediction model, we propose a tunable online flow scheduling algorithm to solve the online flow scheduling problem effectively. By introducing a scaling factor on bandwidth allocation, this algorithm allows us to conduct arbitrary trade-offs between the conservative and aggressive behaviors in terms of energy conservation. The effectiveness of the proposed algorithm is validated through rigorous theoretical analysis and further confirmed by extensive numerical simulations.
INDEX TERMS
bandwidth allocation, computer centres, energy conservation, power consumption, probability, scheduling
CITATION

B. Zhou, J. Wu, L. Wang, F. Zhang and Z. Liu, "Online Flow Scheduling with Deadline for Energy Conservation in Data Center Networks," 2017 IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS), Shenzhen, Guangdong, China, 2018, pp. 578-585.
doi:10.1109/ICPADS.2017.00081
226 ms
(Ver 3.3 (11022016))