The Community for Technology Leaders
2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW) (2013)
San Jose, CA, USA
July 15, 2013 to July 19, 2013
ISBN: 978-1-4799-1604-7
pp: 1-6
Karani Kardas , Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
Ilkay Ulusoy , Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey
Nihan Kesim Cicekli , Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
ABSTRACT
An event model learning framework is proposed for indoor and outdoor surveillance applications in order to decrease human intervention in the modeling process. The resulting framework makes event detection and recognition flexible, domain and scene independent. A set of predicate types is introduced which define basic spatio-temporal relations and interactions between objects and people in the videos. A set of policies to choose the appropriate predicates is proposed for the event learning process. First, the video data is converted to a set of Markov Logic Network (MLN) predicates. Then, these policies, together with the discriminative weight learning algorithm, are used to infer the relevance of the predicates to the events being queried. Finally, the event model is generated. The proposed framework is applied to the generation of three different event models from CANTATA and our datasets. In particular, model generation for left object event is discussed in detail.
INDEX TERMS
Event Inference, Event Model Learning, Markov Logic Networks, Event Understanding, Event Recognition
CITATION

K. Kardas, I. Ulusoy and N. K. Cicekli, "Learning complex event models using markov logic networks," 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), San Jose, CA, USA, 2013, pp. 1-6.
doi:10.1109/ICMEW.2013.6618413
97 ms
(Ver 3.3 (11022016))