The Community for Technology Leaders
2012 IEEE International Conference on Multimedia and Expo (2012)
Melbourne, VIC Australia
July 9, 2012 to July 13, 2012
ISSN: 1945-7871
ISBN: 978-1-4673-1659-0
pp: 134-139
ABSTRACT
Although it has been extensively studied for many years, automatic image annotation is still a challenging problem. Recently, data-driven approaches have demonstrated their great success to image auto-annotation. Such approaches leverage abundant partially annotated web images to annotate an uncaptioned image. Specifically, they first retrieve a group of visually closely similar images given an uncaptioned image as a query, then figure out meaningful phrases from the surrounding texts of the image search results. Since the surrounding texts are generally noisy, how to effectively mine meaningful phrases is crucial for the success of such approaches. We propose a mixture modeling approach which assumes that a tag is generated from a convex combination of topics. Different from a typical topic modeling approach like LDA, topics in our approach are explicitly learnt from a definitive catalog of the Web, i.e. the Open Directory Project (ODP). Compared with previous works, it has two advantages: Firstly, it uses an open vocabulary rather than a limited one defined by a training set. Secondly, it is efficient for real-time annotation. Experimental results conducted on two billion web images show the efficiency and effectiveness of the proposed approach.
INDEX TERMS
Vocabulary, Real time systems, Training, Semantics, Noise measurement, Indexes, Vectors, Topic space modeling, Search based image annotation, Tag mining
CITATION

L. Dai, X. Wang, L. Zhang and N. Yu, "Efficient Tag Mining via Mixture Modeling for Real-Time Search-Based Image Annotation," 2012 IEEE International Conference on Multimedia and Expo(ICME), Melbourne, VIC Australia, 2012, pp. 134-139.
doi:10.1109/ICME.2012.104
184 ms
(Ver 3.3 (11022016))