The Community for Technology Leaders
2013 IEEE 13th International Conference on Data Mining Workshops (2013)
TX, USA USA
Dec. 7, 2013 to Dec. 10, 2013
pp: 445-451
ABSTRACT
In this paper, we want to introduce experimental economics to the field of data mining and vice versa. It continues related work on mining deterministic behavior rules of human subjects in data gathered from experiments. Game-theoretic predictions partially fail to work with this data. Equilibria also known as game-theoretic predictions solely succeed with experienced subjects in specific games - conditions, which are rarely given. Contemporary experimental economics offers a number of alternative models apart from game theory. In relevant literature, these models are always biased by philosophical plausibility considerations and are claimed to fit the data. An agnostic data mining approach to the problem is introduced in this paper - the philosophical plausibility considerations follow after the correlations are found. No other biases are regarded apart from determinism. The dataset of the paper ``Social Learning in Networks" by Choi et al 2012 is taken for evaluation. As a result, we come up with new findings. As future work, the design of a new infrastructure is discussed.
INDEX TERMS
Games, Correlation, Economics, Data mining, Biological system modeling, Game theory, Data models
CITATION

R. Tagiew, D. I. Ignatov and F. Amroush, "Social Learning in Networks: Extraction of Deterministic Rules," 2013 IEEE 13th International Conference on Data Mining Workshops(ICDMW), TX, USA USA, 2013, pp. 445-451.
doi:10.1109/ICDMW.2013.75
96 ms
(Ver 3.3 (11022016))