The Community for Technology Leaders
2013 IEEE 13th International Conference on Data Mining Workshops (2013)
Dec. 7, 2013 to Dec. 10, 2013
pp: 72-79
We introduce a class of methods for Gaussian process regression with functional expectation constraints. We show that the solution can be found without the need for approximations when the constraint set satisfies a representation theorem. Further, the solution is unique when the constraint set is convex. Constrained Gaussian process regression is motivated by the modeling of transposable (matrix) data with missing entries. For such data, our approach augments the Gaussian process with a nuclear norm constraint to incorporate low rank structure. The constrained Gaussian process approach is applied to the prediction of hidden associations between genes and diseases using a small set of observed associations as well as prior co variances induced by gene-gene interaction networks and disease ontologies. We present experimental results showing the performance improvements that result from the use of additional constraints.
Bayes methods, Gaussian processes, Indexes, Diseases, Covariance matrices, Kernel, Data models

O. Koyejo, C. Lee and J. Ghosh, "Constrained Gaussian Process Regression for Gene-Disease Association," 2013 IEEE 13th International Conference on Data Mining Workshops(ICDMW), TX, USA USA, 2013, pp. 72-79.
90 ms
(Ver 3.3 (11022016))