The Community for Technology Leaders
2012 IEEE 12th International Conference on Data Mining Workshops (2012)
Brussels, Belgium Belgium
Dec. 10, 2012 to Dec. 10, 2012
ISBN: 978-1-4673-5164-5
pp: 500-505
In this paper, inspired by the application potential of Regular Multiple Criteria Linear Programming (RMCLP), we proposed a novel Laplacian RMCLP(called Lap-RMCLP)method for semi-supervised classification problem, which can exploit the geometry information of the marginal distribution embedded in unlabeled data to construct a more reasonable classifier and is a useful extension of TSVM. Furthermore, by adjusting the parameter, Lap-RMCLP can convert to RMCLP naturally. All experiments on public and data sets and Basic Endowment Insurance Fund Audit(BEIFA) dataset show that Lap-RMCLP is a competitive method in semi-supervised classification.
Support vector machines, Training, Accuracy, Laplace equations, Manifolds, Kernel, Linear programming, Basic Endowment Insurance Fund Audit (BEIFA) dataset, semi-supervised classification, Laplacian, RMCLP

Z. Qi, Y. Tian and Y. Shi, "Regular Multiple Criteria Linear Programming for Semi-supervised Classification," 2012 IEEE 12th International Conference on Data Mining Workshops(ICDMW), Brussels, Belgium Belgium, 2012, pp. 500-505.
87 ms
(Ver 3.3 (11022016))