The Community for Technology Leaders
2013 IEEE 13th International Conference on Data Mining Workshops (2012)
Brussels, Belgium Belgium
Dec. 10, 2012 to Dec. 10, 2012
ISBN: 978-1-4673-5164-5
pp: 187-193
This paper presents a Weighted Self-Organizing Map (WSOM). The WSOM combines the advantages of the standard SOM paradigm with learning that accounts for instance-varying importance. While the learning of the classical batch SOM weights data by a neighborhood function, we augment it with a user-specified instance-specific importance weight for cost-sensitive classification. By focusing on instance-specific importance to the learning of a SOM, we take a perspective that goes beyond the common approach of incorporating a cost matrix into the objective function of a classifier. When setting the weight to be the importance of an instance for forming clusters, the WSOM may also be seen as an alternative for cost-sensitive unsupervised clustering. We compare the WSOM with a classical SOM and logit analysis in financial crisis prediction. The performance of the WSOM in the financial setting is confirmed by superior cost-sensitive classification performance.
Training, Standards, Vectors, Computational modeling, Prediction algorithms, Hidden Markov models, Loss measurement, cost-sensitive clustering, Weighted Self-Organizing Map, instance-varying cost, cost-sensitive classification
Peter Sarlin, "A Weighted SOM for Classifying Data with Instance-Varying Importance", 2013 IEEE 13th International Conference on Data Mining Workshops, vol. 00, no. , pp. 187-193, 2012, doi:10.1109/ICDMW.2012.18
79 ms
(Ver 3.3 (11022016))