The Community for Technology Leaders
2010 IEEE International Conference on Data Mining Workshops (2010)
Sydney, Australia
Dec. 13, 2010 to Dec. 13, 2010
ISBN: 978-0-7695-4257-7
pp: 1400-1403
ABSTRACT
In today's applications, evolving data streams are ubiquitous. Stream clustering algorithms were introduced to gain useful knowledge from these streams in real-time. The quality of the obtained clusterings, i.e. how good they reflect the data, can be assessed by evaluation measures. A multitude of stream clustering algorithms and evaluation measures for clusterings were introduced in the literature, however, until now there is no general tool for a direct comparison of the different algorithms or the evaluation measures. In our demo, we present a novel experimental framework for both tasks. It offers the means for extensive evaluation and visualization and is an extension of the Massive Online Analysis (MOA) software environment released under the GNU GPL License.
INDEX TERMS
data streams, clustering, evaluation measures
CITATION

P. Kranen et al., "Clustering Performance on Evolving Data Streams: Assessing Algorithms and Evaluation Measures within MOA," 2010 IEEE International Conference on Data Mining Workshops(ICDMW), Sydney, Australia, 2010, pp. 1400-1403.
doi:10.1109/ICDMW.2010.17
88 ms
(Ver 3.3 (11022016))