The Community for Technology Leaders
2013 IEEE 13th International Conference on Data Mining (2007)
Omaha, Nebraska, USA
Oct. 28, 2007 to Oct. 31, 2007
ISSN: 1550-4786
ISBN: 0-7695-3018-4
pp: 43-52
Recommender systems based on collaborative filtering predict user preferences for products or services by learning past user-item relationships. A predominant approach to collaborative filtering is neighborhood based (" k-nearest neighbors"), where a user-item preference rating is interpolated from ratings of similar items and/or users. We enhance the neighborhood-based approach leading to substantial improvement of prediction accuracy, without a meaningful increase in running time. First, we remove certain so-called "global effects" from the data to make the ratings more comparable, thereby improving interpolation accuracy. Second, we show how to simultaneously derive interpolation weights for all nearest neighbors, unlike previous approaches where each weight is computed separately. By globally solving a suitable optimization problem, this simultaneous interpolation accounts for the many interactions between neighbors leading to improved accuracy. Our method is very fast in practice, generating a prediction in about 0.2 milliseconds. Importantly, it does not require training many parameters or a lengthy preprocessing, making it very practical for large scale applications. Finally, we show how to apply these methods to the perceivably much slower user-oriented approach. To this end, we suggest a novel scheme for low dimensional embedding of the users. We evaluate these methods on the Netflix dataset, where they deliver significantly better results than the commercial Netflix Cinematch recommender system.
Robert M. Bell, Yehuda Koren, "Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights", 2013 IEEE 13th International Conference on Data Mining, vol. 00, no. , pp. 43-52, 2007, doi:10.1109/ICDM.2007.90
92 ms
(Ver 3.3 (11022016))