The Community for Technology Leaders
Sixth International Conference on Data Mining (ICDM'06) (2006)
Hong Kong
Dec. 18, 2006 to Dec. 22, 2006
ISSN: 1550-4786
ISBN: 0-7695-2701-9
pp: 623-632
Ken Ueno , Toshiba Corporation, Japan
Xiaopeng Xi , University of California, Riverside, USA
Eamonn Keogh , University of California, Riverside, USA
Dah-Jye Lee , Brigham Young University, USA
For many real world problems we must perform classification under widely varying amounts of computational resources. For example, if asked to classify an instance taken from a bursty stream, we may have from milliseconds to minutes to return a class prediction. For such problems an anytime algorithm may be especially useful. In this work we show how we can convert the ubiquitous nearest neighbor classifier into an anytime algorithm that can produce an instant classification, or if given the luxury of additional time, can utilize the extra time to increase classification accuracy. We demonstrate the utility of our approach with a comprehensive set of experiments on data from diverse domains.

X. Xi, D. Lee, E. Keogh and K. Ueno, "Anytime Classification Using the Nearest Neighbor Algorithm with Applications to Stream Mining," Sixth International Conference on Data Mining (ICDM'06)(ICDM), Hong Kong, 2006, pp. 623-632.
87 ms
(Ver 3.3 (11022016))