The Community for Technology Leaders
RSS Icon
Subscribe
San Jose, CA, USA
Nov. 29, 2001 to Dec. 2, 2001
ISBN: 0-7695-1119-8
pp: 505
ABSTRACT
Over the years, a variety of algorithms or finding frequent itemsets in very large transaction databases have been developed. The key feature in most to these algorithms is that they use a constant support constraint to control the inherently exponential complexity of the problem. In general, itemsets that contain only a few items will tend to be interesting if they have a high support, whereas long itemsets can still be interesting even if their support is relatively small. Ideally, we desire to have an algorithm that finds all the frequent itemsets whose support decreases as a function of their length. In this paper we present an algorithm called LPMiner, that finds all itemsets that satisfy a length-decreasing support constraint. Our experimental evaluation shows that LPMiner is up to two orders of magnitude faster than the FP-growth algorithm or finding itemsets at a constant support constraint, and that its runtime increases gradually as the average length of the transactions (and the discovered itemsets) increases.
CITATION
Masakazu Seno, George Karypis, "LPMiner: An Algorithm for Finding Frequent Itemsets Using Length-Decreasing Support Constraint", ICDM, 2001, Proceedings 2001 IEEE International Conference on Data Mining, Proceedings 2001 IEEE International Conference on Data Mining 2001, pp. 505, doi:10.1109/ICDM.2001.989558
41 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool