The Community for Technology Leaders
2017 IEEE 33rd International Conference on Data Engineering (2017)
San Diego, California, USA
April 19, 2017 to April 22, 2017
ISSN: 2375-026X
ISBN: 978-1-5090-6543-1
pp: 23-24
ABSTRACT
Similarity join is a fundamental operation in data cleaning and integration. Existing similarity-join methods utilize the string similarity to quantify the relevance but neglect the knowledge behind the data, which plays an important role in understanding the data. Thanks to public knowledge bases, e.g., Freebase and Yago, we have an opportunity to use the knowledge to improve similarity join. To address this problem, we study knowledge-aware similarity join, which, given a knowledge hierarchy and two collections of objects (e.g., documents), finds all knowledge-aware similar object pairs. To the best of our knowledge, this is the first study on knowledge-aware similarity join. There are two main challenges. The first is how to quantify the knowledge-aware similarity. The second is how to efficiently identify the similar pairs. To address these challenges, we first propose a new similarity metric to quantify the knowledgeaware similarity using the knowledge hierarchy. We then devise a filter-and-verification framework to efficiently identify the similar pairs. We propose effective signature-based filtering techniques to prune large numbers of dissimilar pairs and develop efficient verification algorithms to verify the candidates that are not pruned in the filter step. Experimental results on real-world datasets show that our method significantly outperforms baseline algorithms in terms of both efficiency and effectiveness.
INDEX TERMS
Measurement, Upper bound, Cleaning, Conferences, Data engineering, Computer science, Knowledge based systems
CITATION

Z. Shang, Y. Liu, G. Li and J. Feng, "K-Join: Knowledge-Aware Similarity Join," 2017 IEEE 33rd International Conference on Data Engineering(ICDE), San Diego, California, USA, 2017, pp. 23-24.
doi:10.1109/ICDE.2017.18
90 ms
(Ver 3.3 (11022016))