The Community for Technology Leaders
2011 IEEE 27th International Conference on Data Engineering (2011)
Hannover, Germany
Apr. 11, 2011 to Apr. 16, 2011
ISBN: 978-1-4244-8959-6
pp: 1043-1054
David Lo , School of Information Systems, Singapore Management University, Singapore
Bolin Ding , Department of Computer Science, University of Illinois at Urbana-Champaign, USA
Lucia , School of Information Systems, Singapore Management University, Singapore
Jiawei Han , Department of Computer Science, University of Illinois at Urbana-Champaign, USA
ABSTRACT
We are interested in scalable mining of a non-redundant set of significant recurrent rules from a sequence database. Recurrent rules have the form "whenever a series of precedent events occurs, eventually a series of consequent events occurs". They are intuitive and characterize behaviors in many domains. An example is the domain of software specification, in which the rules capture a family of properties beneficial to program verification and bug detection. We enhance a past work on mining recurrent rules by Lo, Khoo, and Liu to perform mining more scalably. We propose a new set of pruning properties embedded in a new mining algorithm. Performance and case studies on benchmark synthetic and real datasets show that our approach is much more efficient and outperforms the state-of-the-art approach in mining recurrent rules by up to two orders of magnitude.
INDEX TERMS
CITATION

Lucia, J. Han, D. Lo and B. Ding, "Bidirectional mining of non-redundant recurrent rules from a sequence database," 2011 IEEE 27th International Conference on Data Engineering(ICDE), Hannover, Germany, 2011, pp. 1043-1054.
doi:10.1109/ICDE.2011.5767848
95 ms
(Ver 3.3 (11022016))